Acta mathematica scientia,Series A ›› 2017, Vol. 37 ›› Issue (4): 730-750.
Previous Articles Next Articles
Li Zhouhong1, Zhang Fengshuo1, Cao Jinde2,3, Alsaedi Ahmed4, Alsaadi Fuad E5
Received:
2016-09-27
Revised:
2017-02-24
Online:
2017-08-26
Published:
2017-08-26
Supported by:
CLC Number:
Li Zhouhong, Zhang Fengshuo, Cao Jinde, Alsaedi Ahmed, Alsaadi Fuad E. Almost Periodic Solution for a Non-Autonomous Two Species Competitive System with Feedback Controls on Time Scales[J].Acta mathematica scientia,Series A, 2017, 37(4): 730-750.
[1] Chen L S. Mathematical Models and Methods in Ecology (in Chinese). Beijing:Science Press, 1988 [2] Mottoni P, Schiaffino A. Competition system with periodic coefficients:A geometric approach. J Math Bio, 1981, 11:319-335 [3] Cushing J M. Two species competition in a periodic environment. J Math Bio, 1986, 24:381-403 [4] Gopalsa K. Stability and Oscillations in Delay Differential Equation of Population Dynamics. New York:Springer, 1992 [5] Fink A M, Seifert G. Liapunov functions and almost periodic solutions for almost periodic systems. J Differ Equ, 1969, 5:307-313 [6] Cheban D, Mammana C. Invariant manifolds, global attractors and almost periodic solutions of nonautonomous difference equations. Nonlinear Anal, 2004, 56(4):465-484 [7] Corduneanu C. Almost Periodic Functions (second ed). New York:Chelsea, 1989 [8] He C Y. Almost Periodic Differential Equations (in Chinese). Beijing:Higher Education Press, 1992 [9] Zhang C Y. Almost Periodic Type Functions and Ergodicity. New York:Science Press, 2003 [10] Hino Y, Minh N V, Shin J S. Almost Periodic Solutions of Differential Equations in Banach Spaces. London:Taylor and Francis, 2002 [11] Liu Z, Fan M, Chen L S. Globally asymptotic stability in two periodic delayed competitive systems. Appl Math Comput, 2008, 197:271-287 [12] Liu Q L, Ding H S. Existence of positive almost periodic solutions for a Nicholson's blowflies model. Electron J Diff Equ, 2015, 180:1-6 [13] Alzabut J O. Existence and exponential convergence of almost periodic solutions for a discrete Nicholson's blowflies model with a nonlinear Harvesting term. Math Sci Lett, 2013, 2(3):201-207 [14] Stamova I M, Stamov G T, Alzabut J O. Global exponential stability for a class of impulsive BAM neural networks with distributed delays. Appl Math Inform Sci, 2013, 7(4):1539-1546 [15] Alzabut J O. Almost periodic solutions for fox production harvesting model with delay and impulses. Electron J Math Anal Appl, 2013, 1(2):169-177 [16] Alzabut J, Bolat Y, Abdeljawad T. Almost periodic dynamics of a discrete Nicholson's blowflies model involving a linear harvesting term. Adv Differ Equ, 2012, 2012:158 [17] Tan R H, Liu W F, Wang Q L, Liu Z J. Uniformly asymptotic stability of almost periodic solutions for a competitive system with impulsive perturbations. Adv Differ Equ, 2014, 2014:1 [18] Li Y K, Zhang T W. Permanence of a discrete n-species cooperation system with time-varying delays and feedback controls. Math Comput Model, 2011, 53:1320-1330 [19] Xia Y H, Cao J D, Zhang H Y, Chen F D. Almost periodic solutions of n-species competitive system with feedback controls. J Math Anal Appl, 2004, 294(2):503-522 [20] Hao H F, Li W T. Positive periodic solutions of a class of delay differential system with feedback control. Appl Math Comput, 2004, 148:35-46 [21] Liao X Y, Ouyang Z G, Zhou S F. Permanence of species in nonautonomous discreate Lotka-Volterra competitive system with delays and feedback controls. J Comput Appl Math, 2008, 211(1):1-10 [22] Zhang T W, Li Y K, Ye Y. Persitence and almost periodic solutions for a discrete fishing model with feedback control. Commun Nonlinear Sci Numer Simul, 2011, 16:1564-1573 [23] Li Z H. Persistence and almost periodic solutions for a discrete ratio-dependent Leslie system with feedback control. Adv Differ Equ, 2014, 2014:1 [24] Xu J, Teng Z D, Jiang H. Permanence and global attractivity for discrete nonautonomous two-species Lotka-Volterra competitive system with delays and feedback controls. Periodica Math Hungarica, 2011, 63(1):19-45 [25] Hilger S. Analysis on measure chains-a unified approach to continuous and discrete calculus. Results Math 1990, 18(1):18-56 [26] Bohner M, Peterson A. Dynamic Equations on Time Scales. Boston:Birkhäuser, 2001 [27] Bohner M, Peterson A. Advances in Dynamic Equations on Time Scales. Boston:Birkhäuser, 2003 [28] Li Y K, Wang C. Uniformly almost periodic functions and almost periodic solutions to dynamic equations on time scales. Abstract Appl Anal, 2011, Article ID:341520 [29] Li Y K, Han X F. Almost periodic solution for a N-species competition model with feedback controls on time scales. J Appl Math Informatics, 2013, 31:247-262 [30] Zhang H T, Zhang F D. Permanence of an N-species cooperation system with time delays and feedback controls on time scales. J Appl Math Comput, 2014, 46(1-2):17-31 [31] Zhi Y H, Ding Z, Li Y K. Permanence and almost periodic solution for an enterprise cluster model based on ecology theory with feedback controls on time scales. Discrete Dyn Nat Soc, 2013, 8:1-14 [32] Hu M, Lv H. Almost periodic solutions of a single-species system with feedback control on time scales. Adv Differ Equ, 2013, 2013:1 [33] Li Y K, Wang P. Permanence and almost periodic solution of a multispecies Lotka-Volterra mutualism system with time varying delays on time scales. Adv Differ Equ, 2015, 2015:1 |
[1] | Yang Jiashan, Li Tongxing. Oscillation for a Class of Second-Order Damped Emden-Fowler Dynamic Equations on Time Scales [J]. Acta mathematica scientia,Series A, 2018, 38(1): 134-155. |
[2] | Luo Hua. Spectral Theory of Linear Weighted Sturm-Liouville Eigenvalue Problems [J]. Acta mathematica scientia,Series A, 2017, 37(3): 427-449. |
[3] | Fu Jinbo, Chen Lansun. Positive Periodic Solution of Multiple Species Comptition System with Ecological Environment and Feedback Controls [J]. Acta mathematica scientia,Series A, 2017, 37(3): 553-561. |
[4] | Huang Zuda. Positive Pseudo Almost Periodic Solutions for a Delayed Nicholson's Blowflies Model with a Feedback Control [J]. Acta mathematica scientia,Series A, 2016, 36(3): 558-568. |
[5] | Jiang Ani. Pseudo Almost Periodic Solutions for a Model of Hematopoiesis with an Oscillating Circulation Loss Rate [J]. Acta mathematica scientia,Series A, 2016, 36(1): 80-89. |
[6] | YANG Jia-Shan. Oscillation Criteria for Second-Order Dynamic Equations with Positive and Negative Coefficients and Damping on Time Scales [J]. Acta mathematica scientia,Series A, 2014, 34(2): 393-408. |
[7] | JIANG Yu, MEI Li-Quan, SONG Xin-Yu, TIAN Wei-Jun, DING Xue-Mei. Analysis of an Impulsive Epidemic Model with Time Delays and Nonlinear Incidence Rate [J]. Acta mathematica scientia,Series A, 2012, 32(4): 670-684. |
[8] | WANG Wu-Sheng, ZHOU Xiao-Liang. A Generalized Pachpatte Type |Inequality on Time Scales and Application to a Boundary Value Problem [J]. Acta mathematica scientia,Series A, 2012, 32(2): 404-413. |
[9] | LI Tong-Xin, HAN Zhen-Lai, ZHANG Cheng-Hui, SUN Yi-Bing. Oscillation Criteria for Third-order Emden-Fowler Delay Dynamic Equations on Time Scales [J]. Acta mathematica scientia,Series A, 2012, 32(1): 222-232. |
[10] | CUI Cheng, WANG Xiao, GAO Fei, LIU An-Ping. Global Stability of Periodic Solution and Almost Periodic Solution of Price Cooperating Model with Time Lag [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1718-1729. |
[11] | ZHONG Min-Ling, LIU Xiu-Xiang. Dynamical Analysis of a Predator-prey System with Hassell-Varley-Holling Functional Response [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1295-1310. |
[12] | SANG Yan-Bin, WEI Zhong-Li. Existence of Solutions to a Semipositone Third-order Three-point BVP on Time Scales [J]. Acta mathematica scientia,Series A, 2011, 31(2): 455-465. |
[13] | FENG Yao-Ling. The Solutions of Linear Dynamical Equations in Commutative Banach Algebra on Time Scales [J]. Acta mathematica scientia,Series A, 2011, 31(2): 439-446. |
[14] | ZHANG Ruo-Jun, WANG Lin-Shan. Almost Periodic Solutions for Cellular Neural Networks with Distributed Delays [J]. Acta mathematica scientia,Series A, 2011, 31(2): 422-429. |
[15] | LI Yong-Kun, ZHANG Hong-Tao. Positive Periodic Solutions of Neutral Functional Differential Equations with State Dependent Delays on Time Scales [J]. Acta mathematica scientia,Series A, 2010, 30(3): 730-742. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 103
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 107
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|