Acta mathematica scientia,Series A ›› 2016, Vol. 36 ›› Issue (6): 1196-1210.
Previous Articles Next Articles
Geng Fan1, Li Ruizhai1, Ge Xiangyu2
Received:
2016-03-15
Revised:
2016-08-07
Online:
2016-12-26
Published:
2016-12-26
Supported by:
Supported by the Chinese National Social Science Foundation (10BJY104)
CLC Number:
Geng Fan, Li Ruizhai, Ge Xiangyu. Long Time Behavior of Boussinesq Type Equation with Damping Term[J].Acta mathematica scientia,Series A, 2016, 36(6): 1196-1210.
[1] Boussinesq J. Theorie des ondes et des temous qui se prepatent le long d'un canal rectangularly horizontal,en communicant au liquids contend dans ce canal des vitesses sunsiblemend parielles de la surface an fond. J Math Pures Appl, 1872, 17:55-108 |
[1] | Liu Shifang, Ma Qiaozhen. Existence of Strong Global Attractors for Damped Suspension Bridge Equations with History Memory [J]. Acta mathematica scientia,Series A, 2017, 37(4): 684-697. |
[2] | Dai Yuxia, Ke Feng, Li Qing. The Topological Hausdorff Dimension of a Class of Fractal Squares [J]. Acta mathematica scientia,Series A, 2017, 37(3): 519-527. |
[3] | Wang Youming. The Hausdorff Dimnension of the Julia Set Concerning Phase Transitions [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1048-1056. |
[4] | Ma Qiaozhen, Xu Ling, Zhang Yanjun. Asymptotic Behavior of the Solution for the Nonclassical Diffusion Equations with Fading Memory on the Whole Space R3 [J]. Acta mathematica scientia,Series A, 2016, 36(1): 36-48. |
[5] | Wang Heyuan. The Chaos Behavior and Simulation of Three Model Systems of Couette-Taylor Flow [J]. Acta mathematica scientia,Series A, 2015, 35(4): 769-779. |
[6] | Zhang Yanjun, Ma Qiaozhen. Attractors for the Nonclassical Diffusion Equations with Critical Nonlinearity on the Whole Space R3 [J]. Acta mathematica scientia,Series A, 2015, 35(2): 294-305. |
[7] | MA Wen-Jun, MA Qiao-Zhen, GAO Pei-Ming. Regularity and Global Attractor of Nonlinear Elastic Rod Oscillation Equation [J]. Acta mathematica scientia,Series A, 2014, 34(2): 445-453. |
[8] | YANG Zhi-Jian, CHENG Jian-Ling. Asymptotic Behavior of Solutions to the Kirchhoff Type Equation [J]. Acta mathematica scientia,Series A, 2011, 31(4): 1008-1021. |
[9] | GUI Yong-Xin, LI Wen-Xia. Regular Subsets of a Class of Self-affine Set [J]. Acta mathematica scientia,Series A, 2011, 31(3): 796-804. |
[10] | WANG Yan-Ping. Blow-up of |Solutions |of |an |Initial |Boundary |Value Problem for a Class of Nonlinear Wave Equation [J]. Acta mathematica scientia,Series A, 2009, 29(4): 1093-1103. |
[11] | Zhuang Yan;Dai Chaoshou. The Hausdorff Dimension for a Class of Generalized Random Fractals [J]. Acta mathematica scientia,Series A, 2008, 28(2): 240-250. |
[12] | Liao Maoxin; Chu Yuming. Quasiconformal Mappings and Hausdorff Dimension [J]. Acta mathematica scientia,Series A, 2008, 28(1): 183-187. |
[13] | Ma Qiaozhen; Sun Chunyou; Zhong Chengkui. Existence of Strong Global Attractors for the Nonlinear Beam Equations [J]. Acta mathematica scientia,Series A, 2007, 27(5): 941-948. |
[14] | Yang Qing. Upwind Finite Volume Scheme for Semiconductor Device in Three Dimension [J]. Acta mathematica scientia,Series A, 2006, 26(1): 150-160. |
[15] | LI Dong-Long, GUO Bai-Ling. Global Attractor for Complex Ginzburg Landau\=Equation in Whole R\+3 [J]. Acta mathematica scientia,Series A, 2004, 4(5): 607-617. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 261
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 126
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|