[1] Reed M, Simon B. Methods of Modern Mathematical Physics, IV: Analysis of Operators. New York: Academic Press, 1978
[2] Lieb E H. Thomas-Fermi and related theories of atoms and molecules. Rev Modern Phys, 1981, 53: 603-641
[3] Le Bris C. Some results on the Thomas-Fermi-Dirac-von Weizsäcker model. Differential Integral Equations, 1993, 6: 337-353
[4] Lu J, Otto F. Nonexistence of a minimizer for Thomas-Fermi-Dirac-von Weizsäcker model. Comm Math Pure Appl, 2014, 67: 1605-1617
[5] Le Bris C, Lions P L. From atoms to crystals: a mathematical journey. Bull Amer Math Soc, 2005, 42: 291-363
[6] Alves C O, Souto M A S, Soares S H M. Schrödinger-Poisson equations without Ambrosetti-Rabinowitz condition. J Math Anal Appl, 2011, 377: 584-592
[7] Ambrosetti A, Ruiz D. Multiple bound states for the Schrödinger-Poisson problem. Commun Contemp Math, 2008, 10: 391-404
[8] Azzollini A, Pomponio A. Ground state solutions for the nonlinear Schrödinger-Maxwell equations. J Math Anal Appl, 2008, 345: 90-108
[9] Benguria R, Brézis H, Lieb E H. The Thomas-Fermi-von Weizsäcker theory of atoms and molecules. Comm Math Phys, 1981, 79: 167-180
[10] Catto I, Le Bris C, Lions P L. On some periodic Hartree-type models for crystals. Ann Inst H Poincaré Anal Non Linéaire, 2002, 19: 143-190
[11] Chen S W, Wang C L. Existence of multiple nontrivial solutions for a Schrödinger-Poisson system. J Math Anal Appl, 2014, 411: 787-793
[12] Chen S W, Xiao L Q. Existence of multiple nontrivial solutions for a strongly indefinite Schrödinger-Poisson system. Abstr Appl Anal, 2014, Art ID: 240208
[13] Chen S J, Tang C L. High energy solutions for the superlinear Schrödinger-Maxwell equations. Nonlinear Anal, 2009, 71: 4927-4934
[14] Liu Z, Guo S J, Zhang Z. Existence and multiplicity of solutions for a class of sublinear Schrödinger-Maxwell equations. Taiwanese J Math, 2013, 17: 857-872
[15] Ruiz D. The Schrödinger-Poisson equation under the effect of a nonlinear local term. J Funct Anal, 2006, 237: 655-674
[16] Wang Z P, Zhou H S. Positive solution for a nonlinear stationary Schrödinger-Poisson system in R3. Discrete Contin Dyn Syst, 2007, 18: 809-816
[17] Yang M H, Han Z Q. Existence and multiplicity results for the nonlinear Schrödinger-Poisson systems. Nonlinear Anal Real World Appl, 2012, 13: 1093-1101
[18] Zhao L G, Zhao F K. On the existence of solutions for the Schrödinger-Poisson equations. J Math Anal Appl, 2008, 346: 155-169
[19] Chen S W, Wang C L. An infinite-dimensional linking theorem without upper semi-continuous assumption and its applications. J Math Anal Appl, 2014, 420, 1552-1567
[20] D'Aprile T, Mugnai D. Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proc Roy Soc Edinburgh Sect A, 2004, 134: 893-906
[21] Evans L C. Partial Differential Equations. Providence, RI: American Mathematical Society, 1998
[22] Willem M. Minimax Theorems. Boston: Birkhäuser, 1996
[23] Ruiz D. On the Schrödinger-Poisson-Slater system: behavior of minimizers, radial and nonradial cases. Arch Ration Mech Anal, 2010, 198: 349-368
[24] Lieb E H. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann Math, 1983, 118: 349-374 |