Acta mathematica scientia,Series A ›› 2016, Vol. 36 ›› Issue (3): 569-583.
Previous Articles Next Articles
Zhang Shuwen
Received:
2015-10-08
Revised:
2016-03-15
Online:
2016-06-26
Published:
2016-06-26
Supported by:
Supported by the NSFC (31272653, 11301216) and Fujian Provincial Science Foundation (2016J01667)
CLC Number:
Zhang Shuwen. Dynamics of a Predator-Prey System with Impulsive Perturbations and Markovian Switching[J].Acta mathematica scientia,Series A, 2016, 36(3): 569-583.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Guo H J, Chen L S. The effects of impulsive harvest on a predator-prey system with distributed time delay. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(5):2301-2309 |
[1] | Lan Guijie, Fu Yingjie, Wei Chunjin, Zhang Shuwen. Stationary Distribution and Periodic Solution for Stochastic Predator-Prey Systems with Holling-Type Ⅲ Functional Response [J]. Acta mathematica scientia,Series A, 2018, 38(5): 984-1000. |
[2] | Wei Fengying, Lin Qingteng. Extinction and Distribution for an SIQS Epidemic Model with Quarantined-Adjusted Incidence [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1148-1161. |
[3] | Zhou Sen, Yang Zuodong. Extinction and Non-Extinction Behavior of Solutions for a Class of Reaction-Diffusion Equations with a Nonlinear Source [J]. Acta mathematica scientia,Series A, 2016, 36(3): 531-542. |
[4] | Zhang Shuwen. A Stochastic Predator-Prey System with Time Delays and Prey Dispersal [J]. Acta mathematica scientia,Series A, 2015, 35(3): 592-603. |
[5] | HU Guang-Ping, LI Xiao-Ling. Stationary Patterns of a Leslie-Gower Type Three Species Model with Cross-Diffusions [J]. Acta mathematica scientia,Series A, 2013, 33(1): 16-27. |
[6] | SHI Hong-Bo, LI Wan-Tong, LIN Guo. Qualitative Analysis of a Modified Leslie-Gower Predator-Prey System with Diffusion [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1403-1415. |
[7] | ZHONG Min-Ling, LIU Xiu-Xiang. Dynamical Analysis of a Predator-prey System with Hassell-Varley-Holling Functional Response [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1295-1310. |
[8] | ZHANG Jing, REN Yan-Xia. Properties of Superdiffusions with Singular Branching Mechanism [J]. Acta mathematica scientia,Series A, 2010, 30(6): 1474-1484. |
[9] | QIN Fa-Jin. Multiple Periodic Solutions for a Delayed Stage-Structure Predator-Prey Systems |with Harvesting Rate and Diffusion [J]. Acta mathematica scientia,Series A, 2009, 29(6): 1613-1622. |
[10] |
Liang Zhiqing;Chen Lansun.
Stability of Periodic Solution for a Discrete Leslie Predator-prey System [J]. Acta mathematica scientia,Series A, 2006, 26(4): 634-640. |
[11] | Xu Rui; Hao Feilong ;Chen Lansun. A Stage-Structured Predator-Prey Model with Time Delays [J]. Acta mathematica scientia,Series A, 2006, 26(3): 387-395. |
[12] | Teng Zhidong, Chen Lansun. Necessary and Sufficient Conditions for Existence of Positive Periodic Solutions of Periodic Predator-Prey Systems [J]. Acta mathematica scientia,Series A, 1998, 18(4): 402-406. |
|