[1] Billingsley P. Convergence of Probability Measures. New York:John Wiley Sons, 1968
[2] Borodin A N. The asymptotic behavior of local time of recurrent random walk with finite variance. Theory Prob Appl, 1981, 26:758-772
[3] Borodin A N, Ibragimow I A. Limit theorems for functionals of random walks. Proceeding of the Steklov Institute of Mathematics, 1995, 195(2):259 pages
[4] Csörgö M, Revész P. Three strong approximations of the local time of a Wiener process and their applications to invariance. Limit Theorems in Probability and Statistics, 1982, 1:223-254
[5] Csörgö M, Revséz P. On strong invariance for local time of partial sums. Stoch Proc Their Appl, 1985, 20:59-84
[6] Dwass, M. Branching processes in simple random walk. Proc Amer Math Soc, 1975, 51:270-274
[7] Ispány M, Pap G. Asymptotic behavior of critical primitive multi-type branching processes with immigration. 2012, arXiv:1401.3440v1[math.PR]
[8] Kesten H, Kozlov M V, Spitzer F. A limit law for random walk in a random environment. Comp Math, 1975, 30:145-168
[9] Knight F B. Random walks and a sojourn density of Brownian motion. Trans Amer Math Soc, 1963, 109:56-86
[10] Kurtz T G. Diffusion approximations for branching processes. Branching Processes Adv Prob, 1979, 5:262-292
[11] Lamperti J. The limit of a sequence of branching processes. Z Wahr Schein-lichkeisth, 1967, 7:271-288
[12] Lindvall T. Convergence of critical Galton-Watson processes. J Appl Prob, 1972, 9:445-450
[13] Lindvall T. Weak convergence of probability measure and random functions in the function space D([0;1)). J Appl Prob, 1973, 10:109-121
[14] McKean H P. Hölder condition for Brownian local time. J Math Kyoto Univ, 1962, 1:196-201
[15] Perkins E. A global intrinsic characterization of local time. Ann Prob, 1981, 9:800-817
[16] Perkins E. Weak invariance principle for local time. Prob Theory Rel Fields, 1982, 60:437-451
[17] Ray D B. Sojourn times of diffusion processes. Ill J Math, 1963, 7:615-630
[18] Rogers L C G. Brownian local times and branching processes//Picard J. Lecture Notes in Math 1059. Berlin:Springer, 1982:42-55
[19] Wang H M. Mean and variance of first passage time of non-homogeneous random walk. Front Math China, 2012, 7(3):551-559
[20] Zeitouni O. Random walks in random environment//Picard J. Lecture Notes in Math 1837. Berlin:Springer, 2004:189-312 |