[1] Ahmed Abdallah Y. Exponential attractors for first-order lattice dynamical systems. J Math Anal Appl, 2008, 339:217-224
[2] Ahmed Abdallah Y. Uniform exponential attractors for second order non-autonomous lattice dynamical systems. Comm pure Appl Anal, 2009, 8:803-813
[3] Angulo J, Montenegro J F B. Existence and evenness of solitary-wave solutions for an equation of short and long dispersive waves. Nonlinearity, 2000, 13:1595-1611
[4] Benney D J. A general theory for interactions between short and long waves. Stud Appl Math, 1977, 56:81-94
[5] Bekiranov D, Ogawa T, Ponce G. On the well-posedness of Benney's interaction equation of short and long waves. Adv Differential Equations, 1996, 1:919-937
[6] Bekiranov D, Ogawa T, Ponce G. Interaction equations for short and long dispersive waves. J Funct Anal, 1998, 158:357-388
[7] Beyn W J, Pilyugin S Yu. Attractors of reaction diffusion systems on infinite lattices. J Dyna Differential Equations, 2003, 15:485-515
[8] Bates P W, Chen X, Chmaj A. Traveling waves of bistable dynamics on a lattice. SIAM J Math Anal, 2003, 35:520-546
[9] Bates P W, Lisei H, Lu K. Attractors for stochastic lattice dynamical systems. Stoch Dyna, 2006, 6:1-21
[10] Chepyzhov V V, Vishik M I. Attractors for Equations of Mathematical Physics. Providence, RI:Amer Math Soc, 2002
[11] Carrol T L, Pecora L M. Synchronization in chaotic systems. Phys Rev Lett, 1990, 64:821-824.
[12] Chate H, Courbage M. Lattice systems. Physica D, 1997, 103:1-612
[13] Chow S N. Lattice dynamical systems//Lecture Notes in Math 1822. Berlin:Springer, 2003:102 pages
[14] Chua L O, Yang Y. Cellular neural networks:theory. IEEE Trans Circuits Systems, 1988, 35:1257-1272
[15] Chua L O, Roska T. The CNN paradigm. IEEE Trans Circuits Systems, 1993, 40:147-156
[16] Chow S N, Mallet-Paret J, Van Vleck E S. Pattern formation and spatial chaos in spatially discrete evolution equations. Rand Comp Dyna, 1996, 4:109-178
[17] Chow S N, Paret J M, Shen W. Traveling waves in lattice dynamical systems. J Differential Equations, 1998, 149:248-291
[18] Chueshov I, Lasiecka I. Attractors for second-order evolution equations with a nonlinear damping. J Dyna Differential Equations, 2004, 16:477-520
[19] Erneux T, Nicolis G. Propagating waves in discrete bistable reaction diffusion systems. Physica D, 1993, 67:237-244
[20] Fabiny L, Colet P, Roy R. Coherence and phase dynamics of spatially coupled solid-state lasers. Phys Rev A, 1993, 47:4287-4296
[21] Guo B L, Chen L. Orbital stability of solitary waves of the long wave-short wave resonance equations. Math Meth Appl Sci, 1998, 21:883-894
[22] Hillert M. A solid-solution model for inhomogeneous systems. Acta Metall, 1961, 9:525-535
[23] Hsu C, Lin S. Existence and multiplicity of traveling waves in a lattice dynamical system. J Differential Equations, 2000, 164:431-450
[24] Hsu C, Yang S. Existence of monotonic traveling waves in lattice dynamical systems. Inter J Bifur Chaos, 2005, 15:2375-2394
[25] Han X. Exponential attractors for lattice dynamical systems in weighted spaces. Disc Cont Dyna Syst A, 2011, 31:445-467
[26] Han X. Random attractors for stochastic sine-Gordon lattice systems with multiplicative white noise. J Math Anal Appl, 2011, 376:481-493
[27] Han X. Shen W, Zhou S. Random attractors for stochastic lattice dynamical systems in weighted spaces. J Differential Equations, 2011, 250:1235-1266
[28] Han X. Random attractors for second order stochastic lattice dynamical systems with multiplicative noise in weighted spaces. Stoch Dyna, 2012, 12:1150024, 20 pages
[29] Han X. Asymptotic behaviors for second order stochastic lattice dynamical systems on Zk in weighted spaces. J Math Anal Appl, 2013, 397:242-254
[30] Jia X. Zhao C, Yang X. Global attractor and Kolmogorov entropy of three component reversible Gray-Scott model on infinite lattices. Appl Math Comp, 2012, 218:9781-9789
[31] Keener J P. Propagation and its failure in coupled systems of discrete excitable cells. SIAM J Appl Math, 1987, 47:556-572
[32] Kapval R. Discrete models for chemically reacting systems. J Math Chem, 1991, 6:113-163
[33] Karachalios N I, Yannacopoulos A N. Global existence and compact attractors for the discrete nonlinear Schrödinger equation. J Differential Equations, 2005, 217:88-123
[34] Ladyzhenskaya O. Attractors for Semigroups and Evolution Equations. Cambridge:Cambridge University Press, 1991
[35] Li Y S. Long time behavior for the weakly damped driven long-wave-short-wave resonance equations. J Differential Equations, 2006, 223:261-289
[36] 梁芸芸, 李楚进, 赵才地. 格点量子Zakharov 方程组紧致核截面的存在性与熵的估计. 数学物理学报, 2014, 34A:1203-1218
[37] Nicholson D R, Goldman M V. Damped nonlinear Schrödinger equation. Phys Fluids, 1976, 19:1621-1625
[38] Tsutsumi M, Hatano S. Well posedness of the Cauchy problem for the long-wave-short-wave resonance equations. Nonl Analysis, 1994, 22:155-171
[39] Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics. Berlin:Springer, 1997
[40] Wang B. Dynamics of systems on infinite lattices. J Differential Equations, 2006, 221:224-245
[41] Yang X, Zhao C, Cao J. Dynamics of the discrete coupled nonlinear Schrödinger-Boussinesq equations. Appl Math Comp, 2013, 219:8508-8524
[42] 杨新波, 赵才地, 贾晓琳. 自治耦合格点非线性 Schrödinger 方程组的一致吸引子及熵的 估计. 数学物理学报, 2013, 33A:636-645
[43] Zhou S. Attractors for lattice systems corresponding to evolution equations. Nonlinearity, 2002, 15:1079-1095
[44] Zhou S. Attractors for second order lattice dynamical systems. J Differential Equations, 2002, 179:605-624
[45] Zhou S. Attractors for first order dissipative lattice dynamical systems. Physica D, 2003, 178:51-61
[46] Zhou S. Attractors and approximations for lattice dynamical systems. J Differential Equations, 2004, 200:342-368
[47] Zhou S, Shi W. Attractors and dimension of dissipative lattice systems. J Differential Equations, 2006, 224:172-204
[48] Zhou S, Zhao C, Wang Y. Finite dimensionality and upper semicontinuity of compact kernel sections of non-autonomous lattice systems. Disc Cont Dyna Syst A, 2008, 21:1259-1277
[49] Zhou S, Han X. Pullback exponential attractors for non-autonomous lattice systems. J Dyna Differential Equations, 2012, 24:601-631
[50] Zhou S, Han X. Uniform exponential attractors for non-autonomous KGS and Zakharov lattice systems with quasiperiodic external forces. Nonl Analysis, 2013, 78:141-155
[51] Zhao C, Zhou S. Compact kernel sections for nonautonomous Klein-Gordon-Schrödinger equation on infinite lattice. J Math Anal Appl, 2007, 332:32-56
[52] Zhao C, Zhou S. Compact kernel sections of long-wave-short-wave resonance equations on infinite lattices. Nonl Analysis, 2008, 68:652-670 |