[1] Bakin S. Adaptive regression and model selection in data mining problems[D]. Canberra:Australian National University, 1999
[2] Bach F. Consistency of the group Lasso and multiple kernel learning. The Journal of Machine Learning Research, 2008, 9:1179-1225
[3] Boikanyo O A, Morosanu G. Four parameter proximal point algorithms. Nonlinear Analysis, 2011, 74:544-555
[4] Combettes P L, Pesquet J C. Proximal splitting methods in signal processing. 2010, arXiv:0912.3522v4[math.OC]
[5] Combettes P L, Wajs V R. Signal recovery by proximal forward-backward splitting. Multiscale Modeling and Simulation, 2005, 4:1168-1200
[6] Eckstein J, Bertsekas D P. On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Mathematical Programming, 1992, 55:293-318
[7] Friedman J, Hastie T, Tibshirani R. A note on the group Lasso and a sparse group Lasso. 2010, arXiv:1001.0736v1[math.ST]
[8] Hiriart-Urruty J B, Lemarechal C. Fundamentals of Convex Analysis. Berlin:Springer-Verlag, 2001
[9] Luo Z Q, Tseng P. On the linear convergence of descent methods for convex essentially smooth minimization. SIAM Journal on Control and Optimization, 1992, 30(2):408-425
[10] Ma S, Song X, Huang J. Supervised group Lasso with applications to microarray data analysis. BMC bioinformatics, 2007, DOI:10.1186/1471-2105-8-60
[11] Meier L, Van De Geer S, Buhlmann P. The group Lasso for logistic regression. Journal of the Royal Statistical Society, 2008, 70(1):53-71
[12] Nesterov Y. Introductory Lectures on Convex Optimization. Boston:Kluwer, 2004
[13] Tseng P. Approximation accuracy, gradient methods, and error bound for structured convex optimization. Mathematical Programming, 2010, 125(2):263-295
[14] Rockafellar R T, Wets R J B. Variational Analysis. New York:Springer-Verlag, 1998
[15] Rockafellar R T. Convex Analysis. Princeton:Princeton Univ Press, 1970
[16] Tibshirani R. Regression shrinkage and selection via the Lasso. Jourbal of the Royal Statistical Society, 1996, 58:267-288
[17] Vincent M, Hansen N R. Sparse group lasso and high dimensional multinomial classification. Journal of Computational Statistics and Data Analysis, 2012, arXiv:1205.1245v1[stat.ML]
[18] Yang H, Xu Z, King I, et al. Online learning for group Lasso. In 27th International Conference on Machine Learning, Iaifa, Israel:DBLP, 2010
[19] Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, 2006, 68(1):49-67
[20] Zhang H B, Jiang J, Luo, Z Q. On the linear convergence of a proximal gradient method for a class of nonsmooth convex minimization problems. Journal of Operations Research Socienty of China, 2013, 1(2):163-186
[21] Zhang H B, Wei J, Li M, et al. On proximal gradient method for the convex problems regularized with the group reproducing kernel norm. Journal of Global Optimization, 2014, 58(1):169-188 |