[1] Abate M. Horospheres and Iterates of Holomorphic Maps. Math Z, 1988, 198(2):225-238
[2] Abate M. Iteration Theory of Holomopphic Maps on Taut Manifolds. Cosenza:Mediterranean Press, 1989
[3] Abate M, Raissy J. Wolff-Denjoy theorems in non-smooth convex domains. Ann Mat Pura Appl, 2014, 193:1503-1518
[4] Baker I N, Rippon P J. On compositions of analytic self-mappings of a convex domain. Arch Math,1990, 55:380-386
[5] Beardon A F. Semi-groups of analytic maps. Computational Methods and Function Theory, 2001, 1:249-258
[6] Beardon A F, Carne T K, Minda D, Ng T W. Random iteration of analytic maps. Ergodic Theory and Dynamical Systems, 2004, 24:659-675
[7] Beardon A F. Iteration of contractions and analytic maps. Proc London Math Soc, 1990, 2:141-150
[8] Beardon A F. Repeated compositions of analytic maps. Computational Methods and Function Theory, 2001, 1:235-248
[9] Beardon A F. The dynamics of contractions. Ergodic Theory and Dynamical Systems, 1997, 17:1257-1266
[10] Beardon A F. The geometry of Pringsheim's continued fractions. Geometriae Dedicata, 2001, 84:125-134
[11] Bracci F. A note on random holomorphic iteration in convex domains. Proceedings of the Edinburgh Mathematical Society, 2008, 51:297-304
[12] Bracci F, Patrizio G, Trapani S. The pluricomplex poisson kernel for strongly convex domains. Trans Amer Math Soc, 2008, 361:979-1005
[13] Bracci F. Dilatation and order of contact for holomorphic self-maps of strongly convex domains. Proc London Math Soc, 2003, 86:131-152
[14] Bracci F. Fixed points of commuting holomorphic mappings other than the Wolff points. Trans Amer Math Soc, 2003, 355:2569-2584
[15] Bracci F. A note random holomorphic iteration in convex domains. Proc Edinb Math Soc, 2008, 51:297-304
[16] Budzynska M. The Denjoy-Wolff theorem in Cn. Nonlinear Anal, 2012, 75:22-29
[17] Chen G N. Iteration for holomorphic maps of the unit ball and the generalized upper half-plane in Cn. J Math Anal Appl, 1984, 98:305-313
[18] Conway J B. A Course in Functional Analysis. New York:Springer-Verlag, 2003
[19] Eustice J. Holomorphic idempotents and common fixed points on the 2-disk. Michigan Math, 1972, 19(2):347-352
[20] Heins M H. A theorem of Wollf-Denjoy type. Complex Analysis, 1988, 86:81-86
[21] Keen L, Lakic N. Random Holomorphic iterations and degenerate subdomains of the unit disk. Trans Amer Math Soc, 2006, 134:371-378
[22] Kubota Y. Iteration of holomorphic maps of the unit ball into itself. Proc Amer Math Soc, 1983, 88(3):476-480
[23] Lorentzen L. Convergence of compositions of self-mappings. Ann Mat Pura Appl, 1999, 53:121-145
[24] Ren F, Zhang W. Dynamics on Weakly pseudoconvex domains. Chinese Ann Math Ser, 1995, 4:467-476 |