Acta mathematica scientia,Series A ›› 2013, Vol. 33 ›› Issue (4): 735-745.
• Articles • Previous Articles Next Articles
SHI Dong-Yang1, YU Zhi-Yun2
Received:
2011-05-30
Revised:
2012-12-12
Online:
2013-08-25
Published:
2013-08-25
CLC Number:
SHI Dong-Yang, YU Zhi-Yun. Superclose and Superconvergence Analysis of a Low Order Nonconforming Mixed Finite Element Method for Stationary
Stokes Equations with Damping[J].Acta mathematica scientia,Series A, 2013, 33(4): 735-745.
[1] Wahlbin L B. Superconvergence in Galerkin Finite Element Methods, Vol 1605. Berlin: Springer, 1995 [21] Lin Q, Tobiska L, Zhou A. Superconvergence and extrapolation of nonconforming low order elements applied to the |
[1] | ZHANG Zu-Jin. An Improved Regularity Criterion for the 3D Navier-Stokes Equations in Terms of Two Entries of the Velocity Gradient [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1327-1335. |
[2] | YANG Xin-Guang, WANG Hong-Jun, LI Jun-Tao. Uniform Attractors for the 2D Non-Autonomous Navier-Stokes Equation with Weak Damping [J]. Acta mathematica scientia,Series A, 2014, 34(4): 828-840. |
[3] | GAO Zhen-Sheng, JIANG Fei, WANG Wei-Wei. Semi-Strong Solutions to Hydrodynamic Flow of Liquid Crystals [J]. Acta mathematica scientia,Series A, 2014, 34(2): 367-377. |
[4] | DONG Jian-Wei, ZHANG You-Lin, WANG Yan-Ping. Analysis of the Stationary Quantum Navier-Stokes Equations in one Space Dimension [J]. Acta mathematica scientia,Series A, 2013, 33(4): 719-727. |
[5] |
SONG Hong-Li, GUO Zhen-Hua.
Existence of Global Strong Solutions and Interface Behavior of Solutions for 1D Compressible Navier-Stokes Equations with Free Boundary Value Problem [J]. Acta mathematica scientia,Series A, 2013, 33(4): 601-620. |
[6] | BIAN Dong-Fen, YUAN Bao-Quan. Regularity of Weak Solutions to the Generalized Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1601-1609. |
[7] | ZHAO Cai-De. H1-uniform Attractor for 2D Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1416-1430. |
[8] | YUAN Hong-Jun, WANG Shu. The Zero-Mach Limit of the Compressible Convection [J]. Acta mathematica scientia,Series A, 2011, 31(1): 53-63. |
[9] | SUN Jian-Zhu, FAN Ji-Shan. Regularity Criteria for a Two-fluid Model of the Truncated Euler Equations [J]. Acta mathematica scientia,Series A, 2010, 30(6): 1693-1698. |
[10] | SHI Dong-Yang, WANG Hui-Min. The Lumped Mass Nonconforming Finite Element Approximation for the Nonstationary Navier-Stokes Equations on Anisotropic Meshes [J]. Acta mathematica scientia,Series A, 2010, 30(4): 1018-1029. |
[11] |
Li Kaitai;Jia Huilian.
The Navier-Stokes Equations in Stream Layer or on Stream Surface and a Dimension Split Method [J]. Acta mathematica scientia,Series A, 2008, 28(2): 266-282. |
[12] |
Zhang Ting.
Discontinuous Solutions of the Navier-Stokes Equations for Compressible Flow with Density-Dependent Viscosity [J]. Acta mathematica scientia,Series A, 2008, 28(2): 214-221. |
[13] | Dong Boqing; Li Yongsheng. Large Time Behavior of the Modified Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2006, 26(4): 498-505. |
[14] | WANG He-Yuan, DING Su-Zhen, XI Chu-Wei. Numerical Simulation of Spherical Couette Flow [J]. Acta mathematica scientia,Series A, 2005, 25(2): 245-250. |
[15] | He Yinnian. Optimum Nonlinear Galerkin Algorithm for the Penalized Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 1998, 18(3): 251-256. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 20
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 71
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|