Acta mathematica scientia,Series A ›› 2013, Vol. 33 ›› Issue (4): 636-645.
• Articles • Previous Articles Next Articles
YANG Xin-Bo, ZHAO Cai-De, JIA Xiao-Lin
Received:
2012-02-07
Revised:
2013-05-15
Online:
2013-08-25
Published:
2013-08-25
Supported by:
国家自然科学基金(11271290)、国家973前期预研基金(2012CB426510)、温州大学科研基金(2008YYLQ01)和温州大学研究生创新基金(31606036010129)资助
CLC Number:
YANG Xin-Bo, ZHAO Cai-De, JIA Xiao-Lin. The Uniform Attractor and Entropy of the Autonomous Coupled Nonlinear SchrÖdinger Equations on Infinite Lattices[J].Acta mathematica scientia,Series A, 2013, 33(4): 636-645.
[1] Chate H, Courbage M. Lattice systems. Physica D, 1997, 103: 1--612 [6] Chow S N, Mallet-Paret J. Pattern formation and spatial chaos in lattice dynamical systems. IEEE Trans Circuits Syst, 1995, 42: 746--751 [7] Fabiny L, Colet P, Roy R. Coherence and phase dynamics of spatially coupled solid-state lasers. Phys Rev A, 1993, 47: 4287--4296 [8] Hillert M. A solid-solution model for inhomogeneous systems. Acta Metall, 1961, 9: 525--535 [9] Chua L O, Roska T. The CNN paradigm. IEEE Trans Circuits Systems, 1993, 40: 147--156 [10] Chua L O, Yang Y. Cellular neural networks: theory. IEEE Trans Circuits Syst, 1988, 35: 1257--1272 [11] Chow S N, Mallet-Paret J, Van Vleck E S. Pattern formation and spatial chaos in spatially discrete evolution equations. Rand Compu Dyna, 1996, 4: 109--178 [12] Bates P W, Lu K, Wang B. Attractors for lattice dynamical systems. Inter J Bifur Choas, 2001, 11(1): 143--153 [13] Wang B. Dynamics of systems on infinite lattices. J Differential Equations, 2006, 221: 224--245 [14] Zhou S. Attractors for lattice systems corresponding to evolution equations. Nonlinearity, 2002, 15: 1079--1095 [15] Zhou S. Attractors for second order lattice dynamical systems. J Differential Equations, 2002, 179: 605--624 [16] Zhou S. Attractors for first order dissipative lattice dynamical systems. Physica D, 2003, 178: 51--61 [17] Zhou S. Attractors and approximations for lattice dynamical systems. J Differential Equations, 2004, 200: 342--368 [18] Zhou S, Shi W. Attractors and dimension of dissipative lattice systems. J Differential Equations, 2006, 224: 172--204 [19] Wang B. Asymptotic behavior of non-autonomous lattice systems. J Math Anal Appl, 2007, 331: 121--136 [20] Zhao X, Zhou S. Kernel sections for processes and nonautonomous lattice systems. Disc Cont Dyna Syst (B), 2008, 9: 763--785 [21] Zhao C, Zhou S. Compact kernel sections for nonautonomous Klein-Gordon-Schr\"odinger equations on infinite lattices. J Math Anal Appl, 2007, 332: 32--56 [22] Zhou S, Zhao C. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Comm Pure Appl Math, 2007, 21: 1087--1111 [23] Bate P W, Lisei H, Lu K. Attractors for stochastic lattice dynamical systems. Stoc Dyna, 2006, 6: 1--21 [24] Lv Y, Sun J H. Dynamical behavior for stochastic lattice systems. Chaos, Solitons & Fractals, 2006, 27: 1080--1090 [26] Han X, Shen W, Zhou S. Random attractors for stochastic lattice dynamical systems in weighted spaces. J Differential Equations, 2011, 250: 1235--1266 [27] Wang X, Li S, Xu D. Random attractors for second-order stochastic lattice dynamical systems. Nonl Analysis (Theory, Methods \& Applications), [28] Ahmed Y. Abdallah exponential attractors for first-order lattice dynamical systems. J Math Anal Appl, 2008, 339: 217--224 [29] Ahmed Y. Abdallah uniform exponential attractors for first order non-autonomous lattice dynamical systems. J Differential Equations, 2011, 251: 1489--1504 [30] Goubet O, Kechiche W. Uniform attractor for non-autonomous nonlinear Schr\"odinger equation. Comm Pure Appl Math, 2011, 10: 639--651 [31] Chepyzhov V V, Vishik M I. Attractors for Equations of Mathematical Physics. AMS Colloquium Publications, 49. Providence, RI: AMS, 2002 [32] Lorentz G, Golistschek M, Makovoz Y. Constructive Approximation, Advanced Problem. Funct Principles of Math Sciences. Berlin: Springer-Verlag, 1996 |
[1] | LIANG Yun-Yun, LI Chu-Jin, HAO Cai-Di. Compact Kernel Sections and Kolmogorov Entropy for the Lattice Zakharov Equations with a Quantum Correction [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1203-1218. |
[2] | ZHANG Dan-Dan. Pointwise Estimates for the Solution to the Multi-Dimensional Generalized BBM-Burgers Equation [J]. Acta mathematica scientia,Series A, 2014, 34(3): 473-486. |
[3] | Jum-Ran KANG. GENERAL DECAY FOR A DIFFERENTIAL INCLUSION OF KIRCHHOFF TYPE WITH A MEMORY CONDITION AT THE BOUNDARY [J]. Acta mathematica scientia,Series A, 2014, 34(3): 729-738. |
[4] | MA Wen-Jun, MA Qiao-Zhen, GAO Pei-Ming. Regularity and Global Attractor of Nonlinear Elastic Rod Oscillation Equation [J]. Acta mathematica scientia,Series A, 2014, 34(2): 445-453. |
[5] | WANG Zhong-Liang. Existence and Asymptotic Behaviour of Positive Solutions for a Polyharmonic Equation with Weight [J]. Acta mathematica scientia,Series A, 2013, 33(5): 829-841. |
[6] | WANG Shu, YANG Jian-Wei, WANG Wei. The Relaxation Limit of Bipolar Euler-Maxwell Equations Arising from Plasma [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1543-1549. |
[7] | ZHAO Cai-De. H1-uniform Attractor for 2D Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1416-1430. |
[8] | YANG Zhi-Jian, CHENG Jian-Ling. Asymptotic Behavior of Solutions to the Kirchhoff Type Equation [J]. Acta mathematica scientia,Series A, 2011, 31(4): 1008-1021. |
[9] | WU Hong-Wei. Regularity Criteria for the Compressible Magneto-hydrodynamic Equations [J]. Acta mathematica scientia,Series A, 2010, 30(3): 593-602. |
[10] | KONG Ling-Hua, ZHAO Li-Zhong, ZHENG Shi-Ning. Asymptotic Analysis to Parabolic Equations with Absorptions and Coupled Localized Sources [J]. Acta mathematica scientia,Series A, 2010, 30(1): 267-277. |
[11] | Li Xiang|Zhu Jianmin|Huang Jianhua. Inertial Manifolds with Delays and Approximate Inertial Manifolds of a Class of Non-autonomous Retarded Evolution Equations with Quasi-Periodic Terms [J]. Acta mathematica scientia,Series A, 2008, 28(6): 1088-1096. |
[12] | Dong Wangyuan. Feedback Stabilization of a Class of Parabolic Systems with Neumann Boundary Conditions [J]. Acta mathematica scientia,Series A, 2008, 28(6): 1133-1149. |
[13] | SHANG Y-Dong, GUO Bo-Ling. Approximate Inertial Manifolds for the Nonlinear Sobolev Galpern Equations [J]. Acta mathematica scientia,Series A, 2004, 24(1): 105-115. |
[14] | SHANG Ya-Dong, GUO Bo-Ling. The Global Attractors for the Periodic Initial Value Problem for Dissipative Generalized Symmetric Regularized Long Wave Equations [J]. Acta mathematica scientia,Series A, 2003, 23(6): 745-757. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 112
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 56
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|