[1] Chen Y P, Huang Y Q. The superconvergence of mixed finite element methods for nonlinear hyperbolic equations.
Comm Nonlinear Sci Numer Simulation, 1998, 3(3): 155--158
[2] Nagumo J, Arimoto S, Yoshizawa S. An active pulse transmission line simulating nerve axon. Proc IRE, 1962, 50: 91--102
[3] Guo H, Rui H X. Least-squares Galerkin procedures for pseudo-hyperbolic equations. Appl Math Comput, 2007, 189: 425--439
[4] Liu Y, Li H. H1-Galerkin mixed finite element methods for pseudo-hyperbolic equations. Appl Math Comput, 2009, 212: 446--457
[5] 刘洋, 李宏, 何斯日古楞. 伪双曲型积分-微分方程的H1-Galerkin混合元法误差估计. 高等学校计算数学学报, 2010, 32(1): 1--20
[6] 刘洋, 李宏, 高巍, 何斯日古楞. 伪双曲方程的新分裂式正定混合元方法. 应用数学, 2011, 24(1): 104--111
[7] 王同科. 一类二维粘性波动方程的交替方向有限体积元方法. 数值计算与计算机应用, 2010, 31(1): 64--75
[8] Pani A K, Yuan J Y. Mixed finite element methods for a strongly damped wave equation. Numer Methods Partial Differential Equations, 2001, 17: 105--119
[9] 石东洋, 关宏波. 粘弹性方程的非协调变网格有限元方法. 高校应用数学学报, 2008, 23(4): 452--458
[10] Russell T F. Rigorous Block-centered Discretizations on Irregular Grids: Improved Simulation of Complex Reservoir Systems. Technical Report No 3, Project Report. Denver: Reservoir Simulation Research Corporation, 1995
[11] Cai Z, Jones J E, Mccormick S F, Russell T F. Control-volume mixed finite element methods. Comput Geosci, 1997, 1: 289--315
[12] Jones J E. A Mixed Finite Volume Element Method for Accurate Computation of Fluid Velocities in Porous Media
[D]. Denver: University of Colorado, 1995
[13] Chou S H, Kwak D Y, Vassilevski P S. Mixed covolume methods for the elliptic problems on triangular grids. SIAM J Numer Anal, 1998, 35: 1850--1861
[14] Chou S H, Kwak D Y. Mixed covolume methods on retangular grids for elliptic problems. SIAM J Numer Anal, 2000, 37: 758--771
[15] Bi C J. Superconvergence of mixed covolume method for elliptic problems on triangular grids. J Comput Appl Math, 2008, 216: 534--544
[16] Rui H X. Superconvergence of a mixed covolume method for elliptic problems. Computing, 2003, 71(3): 247--263
[17] Kwak D Y, Kim K Y. Mixed covolume methods for quasi-linear second-order elliptic problems. SIAM J Numer Anal, 2000, 38: 1057--1072
[18] Rui H X. Symmetric mixed covolume methods for parabolic problems. Numer Methods Partial Differential Equation, 2002, 18: 561--583
[19] Yang S X, Jiang Ziwen. Mixed covolume method for parabolic problems on triangular grids. Appl Math Comput, 2009, 215: 1251--1265
[20] 罗振东. 混合有限元法基础及其应用. 北京: 科学出版社, 2006
[21] Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. New York: Springer-Verlag, 1991
[22] Douglas J, Roberts J E. Global estimates for mixed methods for second order elliptic equations. Math Comp, 1985, 44: 39--52 |