Acta mathematica scientia,Series A ›› 2011, Vol. 31 ›› Issue (6): 1654-1661.

• Articles • Previous Articles     Next Articles

Singular Integrals on the Real Hyperplane |in Cn

 GONG Ding-Dong   

  1. Department of Mathematical Sciences, Zhejiang Sci-Tech University, Hangzhou 310018
  • Received:2009-09-13 Revised:2010-08-03 Online:2011-12-25 Published:2011-12-25
  • Supported by:

    浙江省自然科学基金(Y6110425)、浙江理工大学科研启动基金(0913841-Y)和国家自然科学基金(51075421) 资助

Abstract:

The upper space in Cn is an unbounded domain which cannot be biholomorphically equivalent to any bounded domain, and its boundary is the real hyperplane in Cn. The Cauchy type integral with Bochner-Martinelli kernel in the  upper space in Cn can be defined in some sense. In this paper, by using this Cauchy type integral, the Bochner-Martinelli type singular integral  on the real hyperplane in Cn is studied, and the Cauchy principal value and the Plemelj formula are obtained.

Key words: Real hyperplane, Bochner-Martinelli kernel, Singular integral, Plemelj formula

CLC Number: 

  • 32A40
Trendmd