Acta mathematica scientia,Series A ›› 2011, Vol. 31 ›› Issue (6): 1543-1549.

• Articles • Previous Articles     Next Articles

The Relaxation Limit of Bipolar Euler-Maxwell Equations Arising from Plasma

 WANG Shu, YANG Jian-Wei, WANG Wei   

  1. 1.College of Applied Sciences, Beijing University of Technology, Beijing 100124|2.College of |Mathematics and Information Science, North China University of |Water Resources and Electric Power, Zhengzhou 450011; 3.Sinopec Research Institute of Petroleum Engineering, Beijing 100101
  • Received:2009-09-22 Revised:2011-08-10 Online:2011-12-25 Published:2011-12-25
  • Supported by:

    国家自然科学基金(11071009)资助

Abstract:

This work is concerned with multi-dimensional bipolar Euler-Maxwell equations for plasmas with short momentum relaxation time. With the help of the Maxwell iteration, the convergence for the smooth solutions to the bipolar Euler-Maxwell equations towards the solutions to the smooth solutions to the bipolar drift-diffusion equations is proved, as the relaxation time tends to zero. Meanwhile, the formal derivation of the latter from the former is justified.

Key words: Euler-Maxwell equations, Relaxation limit, Drift-diffusion equations

CLC Number: 

  • 35B40
Trendmd