[1] Tuynman GIJS M. Prequantization of symplectic supermanifolds. Ninth conference on Geometry, Integrability and quantization, June 8-13, 2001, Varna, Bulgaria. Solia, 2008: 301--307
[2] Khudarerdian, Hovhannesm M. Semidensities on odd symplectic supermanifolds, Commuications in Mathematical Physics. MPI Fur Mathematik, 2004, 247: 353--390
[3] Dimitry Roytenberg. On the structure of graded symplectic supermanifolds and Courant algebroid. arxiv: math/0203110v1 [math.SG] 12 Mar 2002: 1--17
[4] Dimitry Roytenberg. Courant algebroid, derived brackets and even symplectic supermanifolds. arxiv: math/991078v1 [math.DG] 15 Oct 1999: 1--70
[5] Tuynman G M. Supermanifolds and Super Lie Groups: Basic Theory. Dordrecht, Boston, London: Kluwer Acad Publ, 2004
[6] 柯歇尔 J, 邹异明. 辛几何引论. 北京:科学出版社, 1986
[7] Kostant B. Graded Manifolds, Graded Lie Theory and Prequantization. Lectures Notes in Math 570. Berlin: Springer, 1977
[8] 王宝勤等. 有关 Poisson 超流形. 新疆师范大学学报(自然科学版), 2007, 1: 1--5
[9] Monterde J A. Characterization of graded symplectic structures. Diff Geom Appl, 1992, 2: 81--97
[10] 张飞军, 李开泰. 模丛上的嵌入子丛.数学物理学报, 2009, 29A(1): 151--158
[11] 白瑞蒲. n -李代数的JordanHolder定理与饱和态像. 数学物理学报, 2008, 28A(6): 1015--1023
[12] 郑兆娟. 量子环面李代数的自同构群, 泛中心扩张与导子. 数学物理学报, 2008, 28A(6): 1206--1218
|