[1] Bakry D, Cattiaux P, Guillin A. Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincar´e. J Funct Anal, 2008, 254(3): 727–759
[2] Bakry D, Barthe F, Cattiaux P, Guillin A. A simple proof of the Poincar´e inequality for a large calss of probability measures including the log-concave case. Elect Comm Probab, 2008, 13: 60–66
[3] Cattiaux P, Guillin A, Wang F Y, Wu L M. Lyapunov conditions for super Poincar´e inequality. J Funct Anal, 2009, 256(6): 1821–1841
[4] Chen M F. Estimation of spectral gap for Markov chains. Acta Math Sin (New Ser), 1996, 12(4): 337–360
[5] Chen M F. Equivalence of exponential ergodicity and L2-exponential convergence for Markov chains. Stoch Proc Appl, 2000, 87(2): 281–297
[6] Chen M F. Eigenvalues, Inequalities and Ergodic Theory. New York: Springer-Verlag, 2004
[7] Douc R, Fort G, Guillin A. Subgeometric rates of convergence of f-ergodic strong Markov processes. Stoch Proc Appl, 2009, 119(3): 897–923
[8] Down S, Meyn S P, Tweedie R L. Exponential and uniform ergodicity of Markov processes. Ann Prob, 1995, 23(4): 1671–1691
[9] Fort G, Roberts G O. Subgeometric ergodicity of strong Markov processes. Ann Appl Prob, 2005, 15(2): 1565–1589
[10] Meyn S P, Tweedie R L. Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time
processes. Adv Appl Prob, 1993, 25(3): 518–548
[11] Wang F Y. Functional inequalities for empty essential spectrum. J Funct Anal, 2000, 170(1): 219–245
[12] Wang F Y. Functional Inequalities, Markov Semigroups and Spectral Theory. Beijing: Science Press, 2005
[13] Wang J. Symmetric L´evy type operators. Acta Math Sin (New Ser), 2009, 25(1): 39–46
|