Acta mathematica scientia,Series A
• Articles • Previous Articles Next Articles
Zhang Liangyun
Received:
Revised:
Online:
Published:
Contact:
Abstract: This paper gives a sufficient andnecessary condition for given twisted product$(H^\sigma,\cdot_\sigma)$ to be a weak bialgebra. If $[B, H,\tau]$ are weak skew paired bialgebras and $\tau$ is invertible,then, under some condition, the weakbicrossed product $B\bowtie_\tau H$ is a weak bialgebra. If $(B,H, \sigma)$ is a weak relative Long bialgebra and $\sigma$invertible, then the weak bicrossed product $B^{OP}\bowtie_\sigmaH$ can be constructed. Espically, for the Sweedler 4-dimensionalHopf algebra $H_4$, the author gives an example to show that$(B^{OP}\bowtie_\sigma H_4, \beta)$ is not only a Long bialgebrabut also a non-commutative and non-cocommutative 8-dimensionalHopf algebra, where $B$ is a sub-Hopf algebra of $H_4$. If $B$ and$H$ are weak bialgebras, and $\sigma: B\otimes H\rightarrow k$ isa linear map, then a sufficient and necessary conditionfor $(B,\sigma,\leftharpoonup, \Delta_B)$ to be a weak rightrelative $(H, B)$-dimodule algebra is given.
Key words: Weak skew paired bialgebra, Weak bicrossed product, Weak relative long bialgebra, Weak relative dimodule algebra
CLC Number:
Zhang Liangyun. Weak Skew Paired Bialgebras and Weak Relative Long Bialgebras[J].Acta mathematica scientia,Series A, 2006, 26(4): 601-611.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbA/EN/
http://121.43.60.238/sxwlxbA/EN/Y2006/V26/I4/601
Cited