Acta mathematica scientia,Series A ›› 2005, Vol. 25 ›› Issue (2): 281-288.

• Articles • Previous Articles    

 On the Convergence Analysis of Inexact Proximal Point Algorithms for Maximal Strongly Monotone Operators  

 CENG Liu-Chuan   

  • Online:2005-04-25 Published:2005-04-25
  • Supported by:

    高等学校优秀青年教师教学和科研奖励基金、上海市曙光计划基金资助

Abstract:

The purpose of this paper is to study the iterative approximation of  solutions to the set valued mapping equation0∈T(z)  where T is a maximal strongly monotone  operator. Suppose that {x^k} and {e^k} are the sequences generated by  the inexact proximal  point algorithm
x^{k+1}+c_kT(x^{k+1})> x^k+e^{k+1} such that ‖e^{k+1}‖≤η_k‖x^{k+1}_x^k‖, ∑^∞_{k=0}(η_k-1)<+∞ and inf_(k≥0) η_k=μ≥1 Under suitable restrictions the author proves that{x^k} converges to a root of T if and only if  liminf_{k→+∞} d(x^k,Z)=0

 

Key words: Proximal point algorithm, Maximal strongly monotone operator,Inexact method.

CLC Number: 

  • 47H09
Trendmd