Acta mathematica scientia,Series A ›› 2005, Vol. 25 ›› Issue (2): 220-229.

• Articles • Previous Articles     Next Articles

On the Cauchy Problem for a Reaction Diffusion System with Singular Coefficients

 BANG Da-Heng, HAN Mao-An, WANG Zhi-Cheng   

  • Online:2005-04-25 Published:2005-04-25
  • Supported by:

    国家自然科学基金(19971026、A0324627)和湖南大学自然科学基金资助

Abstract:

 This paper is concerned with the local existence and nonexistence of   nonneg ative solutions and blow up problem in a finite time for the reaction diffusion system with singular coefficients (u_t-t^{-1}Δ u=α_1u^{q_1}+β_1v^\{p_1}+f_1(x),t>0,x∈R^N; v_t-t^\{-1}Δ v=α_2u^\{q_2}+β_2v^{p_2}+f_2(x),t>0,x∈R^ N;lim_{t→0+}u(t,x)=lim_{t→0+}v(t,x)=0,x∈R^N.   where p_i>1, q_i>1 (i=1, 2) , α_1≥0,   α_2>0, β_1>0, β_2≥0,  f_ i(x) (i=1, 2) are continuous, nonnegative and bounded functions,  (f_1(x), f_2(x))(0, 0) .The authors give an explicit condition for the local existence of nonnegative  solutions and a comparison result for the local nonexistence of   nonnegative solutions of the system. Some blow up results for the system are also obtained.

Key words: Reactiondiffusion system, Singular coefficient, Lo cal solution,Blow up

CLC Number: 

  • 35K55
Trendmd