[1]Mazur S.Uber konvexe Mengen in Linearen normierten raumen.Studia Math, 1933,4: 70-84
[2]Cheng Lixin,Shi Shuzhong, Wang Bingwu.Generic Fréchet differentiability of convex functions dominated by a lower semicontinuous convex function.
J Math Anal Appl, 1998, 225:389-400
[3]Fitzpatric S, Phelps R R. Bounded approximants to monotone operators on Banach space. Ann Inst Henri Poincaré,Analyse non linéaire, 1992, 9:573-595
[4]Hiriart Urruty J B. Lipschitz rcontinuity of the approximate subdi fferential of a convex function.Math Scand, 1980,47: 123-134
[5]Stromberg T. On regulation in Banach spaces. Ark Math,1996,34:383-406
[6]Cheng Lixin, Ruan Yingbin, Teng Yanmei. Approximation of convex fu nctions on the dual of Banach spaces. J Approxi Theory, 2002, 116:12 6-140
[7]Phelps R R. Convex functions,monotone operators and differentiability,second edition.In:Dold A, Eckmann B,ed.Lecture Notes in Math.London: Springerverlag,1993.1364
[8]Cheng Lixin, Shi Shuzhong, Lee E S.Generic Fréchet differentiability of convex functions on nonAsplund spaces. J Math Anal Appl, 1997, 214: 367-377
|