[1]Gaines R E, Mawhin T L. Lecture Notes in Math. Ne York: Springerverlag,1 977
[2]葛渭高.多滞量时滞微分方程周期解的存在性.应用数学学报,1994,17 (2):173-181
[3]陈永邵.关于微分差分方程组周期解的存在性.数学进展,1992,21(4):432-438
[4]李永昆.中立型时滞模型的周期正解.数学学报,1996,39(6):789-795
[5]黄先开.具有时滞的Duffing型方程x¨+g(x(t-τ))=p(t)的2π周期解. 科学通报,1994,39(3):201-203
[6]黄先开.具有时滞的n维Lienard型方程的调和解.系统科学与数学,1999,19(3):328-335
[7]Ma S W, Wang Z C, Yu J S. Coincidence degree and periodic s olutions of Duffing equations. Nonlinear Analysis,1998, 34:443-460
[8]Wang G Q, Yan J R. Existence of periodic of solution for nth order nonl inear delay differential equation. Far East J Appl Math,1999, 3(1): 129-134
[9]章毅,张毅.关于二阶常系数线性中立型方程的周期解.数学学报,1990, 33(4):517-520
[10]王根强.二阶中立型方程的周期解.高校应用数学学报,1993, 8(3):251-254
[11]Wang G Q, Cheng S S. A priori bounds for periodic solutions of a delay Rayleigh equation. Applied Mathematics Letters,1999,12(3):41-44
[12]Wang G Q, Yan J R. On existence of periodic solutions of the Raylei gh equation of retarted type. Internat J Math & Math Sci,2000, 23(1): 65-68
[13]李森林,温立志.泛函微分方程. 长沙:湖南科学技术出版社,1987
|