Acta mathematica scientia,Series A ›› 2002, Vol. 22 ›› Issue (2): 270-280.
• Articles • Previous Articles Next Articles
XIE Xing-De, CHENG Xiao-Liang
Online:
Published:
Supported by:
浙江省自然科学基金资助项目
Abstract:
该文讨论用Legendre拟谱方法数值求解非线性CahnHilliard方程的Dirichlet问题.建立了其半离散和全离散逼近格式,它们保持原问题能量耗散的性质.证明了离散解的存在唯一性,并给出了最佳误差估计.数值实验也证实了我们的结果.
Key words: CahnHilliard方程;拟谱方法
CLC Number:
XIE Xing-De, CHENG Xiao-Liang. Cahn-Hilliard方程的拟谱逼近[J].Acta mathematica scientia,Series A, 2002, 22(2): 270-280.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbA/EN/
http://121.43.60.238/sxwlxbA/EN/Y2002/V22/I2/270
[1] BernardiC,MadayY.PolynomialinterpolationresultsfororthogonalpolynomialsinSolobevspaces.JCompuAppliMath,1992,43:58-80 [2] CahnJW,HilliardJE.Freeenergyofanonuniformsystem.IInterfacialfreeenergy.JChemPhys,1958,28:258-267 [3] CanutoC,HussainiM Y,QuarteroniA,ZangTA.Spectralmetho犱sinfluiddynamics.NewYouk:SpringerVerlag,1988 [4] CanutoC,QuarteroniA.ApproximationresultsfororthogonalpolynomialsinSolobevspaces.MathCompu,1992,38 :67-86 [5] ChooS M,ChungSK.ConservativenonlineardifferenceschemsfortheCahnHilliardequation.Computers MathApplic,1998,36:31-39 [6] 程晓良.求解微分方程的有限元方法.杭州大学博士后研究工作报告,1998 [7] CopettiMIM,ElliottC M.NumericalanalysisoftheCahnHilliardequationwithalogarithmicfreeenergy.NumerMath,1992,63:39-65 [8] DuQ,NicolaidesR A.Numericalanalysisofacontinummodelofphasetransition.SIAMJNumerAnal,1991,8:1310-1322 [9] ElliottC M,FrenchDA.NumericalstudiesoftheCahnHilliardequationforphaseseparation.IMAJAppliMath,1987,38:97-128 [10] ElliottC M,FrenchDA.AnonconformingfiniteelementmethodforthetwodimensionalCahnHilliardequation.SIAMJNumerAnal,1989,26:884-903 [11] ElliottC M,FrenchD A,MilnerF A.Asecondordersplitting methodfortheCahnHilliardequation.NumerMath,1989,54:575-590 [12] ElliottC M,LarssonS.ErrorestimateswithsmoothandnonsmoothdataforafiniteelementmethodfortheCahnHilliardequation.MathCompu,1992,58:603-630 [13] ElliottC M,ZhengSongmu.OntheCahnHilliardequation.ArchRatMechAnal,1986,96:339-357 [14] FurihataD.Finitedifferenceschemesforthatinheritenergyconservationordissipationproperty.JComputPhys,1999,156:181-205 [15] KlainermanS.Globalexistencefornonlinearwaveequation.CommuPureAppliMath,1980,33:43-101 [16] MadayY,QuarteroniA.LegendreangChebyshevspectralapproximationofBurgers'equation.Numer Math,1981,37:321-332 [17] MarionM.Approximationinertialmainfol犱sforthepatternformationCahnHilliardequation.MathModandNumerAnal,1989,23:463-488 [18] NicolaenkoB,ScheurerB,TemanR.Someglobaldynamicalpropertiesofaclassofpatternformationequations.CommuninPDE,1989,14:245-297 [19] XingdeYe.ThenumericalanalysisoftheforwardbackwardheatequationandtheCahnHilliardequation.Thesis,ZhejiangUniversity,1999 [20] XingdeYe.TheFouriercollocationMethodfortheCahnHilliardequation.ComputersandMathematicswithApplications,2002
Cited