Acta mathematica scientia,Series A ›› 2002, Vol. 22 ›› Issue (2): 238-243.
• Articles • Previous Articles Next Articles
SUN Lei, GAO Bo
Online:
Published:
Supported by:
山东省教委科技计划项目(J01P01)
Abstract:
图犌的一个分数染色是从犌的独立集的集合ζ 到区间[0,1]的一个映射犆,使得对任意顶点狓,都有: Σ 犛∈ζ,s.t.狓∈狊犆(犛)1,我们将此分数染色的值定义为Σ犛∈ζ犮(犛).图犌的分数色数χ犳(犌)是它的所有分数染色的值的下确界.给出了分数染色临界性的定义并讨论了Kneser图的分数染色临界性.
Key words: 分数染色;临界性;Kneser图
SUN Lei, GAO Bo. Kneser图的分数染色临界性[J].Acta mathematica scientia,Series A, 2002, 22(2): 238-243.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbA/EN/
http://121.43.60.238/sxwlxbA/EN/Y2002/V22/I2/238
[1] ChangGJ,HuangL,Zhu X.Thecircularchromaticnumbersandthefractionalchromaticnumberofdistance graphs.EuropeanJournalofCombinatorics,1998,19:423-431 [2] KlavazarS.Anoteonthefractionalchromaticnumberandthelexicographicproductofgraphs.Preprint,1996 [3] ScheinesrmanE,UllmanD.Fractionalgraphtheory,arationalapproachtographtheory.New York:J Wilay & Sons,1997 [4] FisherDC.Fractionalcoloringswithlargedenominators.JGraphTheory,1995,20:403-409 [5] Larsen M,ProppJ,UllmanD.ThefractionalchromaticnumberofMycielski'sgraphs.JGraphTheory,1995,19:411-416 [6] BondyJA,MurtyUSR.Graphtheorywithapplications.TheMacmillanPressltd,1976
Cited