Acta mathematica scientia,Series A ›› 2002, Vol. 22 ›› Issue (2): 163-170.
• Articles • Previous Articles Next Articles
LI Xiao-Ping, JIANG Jian-Chu
Online:
Published:
Supported by:
湖南省教育厅资助课题
Abstract:
考虑具有正负系数的中立型时滞微分方程dd狋[狓(狋)-犘(狋)狓(狋-τ)]+犙(狋)狓(狋-δ)-犚(狋)狓(狋-σ)=0, 狋≥狋0, 其中P(t)∈C([t0,∞),R),Q(t),R(t)∈C([t0,∞),R+ ),τ,δ,σ∈(0,∞).获得了该方程零解 一致稳定及渐近稳定的充分条件,它推广并改进了现有文献中的结论.
Key words: 中立型时滞微分方程;一致稳定性;渐近稳定性
CLC Number:
LI Xiao-Ping, JIANG Jian-Chu. 中立型时滞微分方程的渐近稳定性[J].Acta mathematica scientia,Series A, 2002, 22(2): 163-170.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbA/EN/
http://121.43.60.238/sxwlxbA/EN/Y2002/V22/I2/163
1 GopalsamyK.Stabilityandoscillationsindelaydifferentialequationsofpopulationdynamics.Boston:KluwerAca demicPublishers,1992 2 HaleJK.Theoryoffunctionaldifferentialequation.New York:SpringerVerlag,1977 3 KuangY.Delaydifferentialequationswithapplicationsinpopulationdynamics.Boston:AcademicPress,1993 4 LadasG,SficasY G.Asymptoticbehaviorofoscillatorysolutions.HiroshimaMathJ,1988,18:351-359 5 LadasG,SficasY G.Asymptoticbehaviorofoscillatorysolutionsofretardeddifferentialequationa.ProcAmerMath Soc,1983,88:247-253 6 YuJS.Asymptoticstabilityfornonautonomousscalarneutraldifferentialequations.JMathAnalAppl,1996,203: 850-860 7 YuJS.Asymptoticstabilityforaclassnonautonomousneutraldifferentialequations.ChinAnnofMath,1997,125: 161-456 8 YoneyamaT.Onthe 3 2 stabilitytheoremforonedimensionaldelaydifferentialequations.JMathAnalAppl,1987, 125:161-173 9 YoneyamaT.Onthe 3 2 stabilitytheoremforonedimensionaldelaydifferentialequationswithunboundeddelay.J MathAnalAppl,1992,165:133-143 10 Joseph W HSo,YuJS,Chen M P.Asymptoticstabilityforscalardelaydifferentialequations.FunkcialEkvac, 1996,39:1-17
Cited
Generalized Game and System of Generalized Vector Quasi-equilibrium Problems in G -convex Spaces