Acta mathematica scientia,Series A ›› 2001, Vol. 21 ›› Issue (3): 398-404.
• Articles • Previous Articles Next Articles
ZHANG Xiao-Yan, LIU Li-Shan
Online:
Published:
Supported by:
国家自然科学基金(19871048)和山东省自然科学基金(Z2000A02)重点资助项目
Abstract:
在Banach空间中,利用锥理论和单调迭代方法研究了一类非线性算子方程的解和最小最大耦合解的存在与迭代逼近定理,并应用到Banach空间中非线性Volterra型积分方程和常微分方程的初值问题.
Key words: 锥, 算子方程, 序半连续, 迭代解.
CLC Number:
ZHANG Xiao-Yan, LIU Li-Shan. Existence Theorems of Iterative Solutions for Nonlinear Operator Equations and Applications[J].Acta mathematica scientia,Series A, 2001, 21(3): 398-404.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbA/EN/
http://121.43.60.238/sxwlxbA/EN/Y2001/V21/I3/398
1 孙经先,刘立山.非线性算子方程的迭代解及其应用.数学物理学报,1993,13(2):141-145 2 刘立山.Banach空间中非线性混合单调Hammerstein型积分方程的迭代解.系统科学与数学,1996,16(4):338-343 3 GuoDajun,Lakshmikantham V.Nonlinearproblemsinabstractcones.New York:AcademicPress,1988 4 郭大钧,孙经先,刘兆理.非线性常微分泛函方法.济南:山东科技出版社,1995 5 GuoDajun,Lakshmikantham V.Coupledfixedpointsofnonlinearoperator swithapplications.NonlinearAnalTMA,1987,11:623-632 6 DeimlingK.Nonlinearfunctionalanalysis.Berlin:SpringerVerlag,1985 7 LiuLishan.IterativemethodforsolutionsandcoupledquasisolutionsofnonlinearFredholmintegralequationsinorderedBanachspaces.IndianJpureApplMath,1996,27(10):956-972 8 HeinzH P.Onthebehaviourofmeasuresofnoncompactnesswithrespecttodifferentiationandintegrationofvectorvaluedfunctions.NonlinearAnal,1983,7(12):1351-1371 9 Guo Dajun.ExtremalsolutionsofnonlinearFredholmintegralequationsinordered Banachspaces.Northeastern MathsJ,1991,7(4):416-423 10 郭大钧,孙经先.抽象空间常微分方程.济南:山东科技出版社,1989 11 刘立山.Banach空间中混合型非线性微分积分方程的混合单调迭代方法.非线性分析及应用(郭大钧主编),北京: 北京科学技术出版社,1994 12 郭大钧,孙经先.非线性积分方程.济南:山东科技出版社,1987
Cited