Acta mathematica scientia,Series A ›› 2000, Vol. 20 ›› Issue (3): 329-335.
• Articles • Previous Articles Next Articles
Online:
Published:
Abstract:
Key words: Geometricsingularperturbationtheory, Fiber, Multifrequency
CLC Number:
Chen Liping. Geometric Singular Perturbation Theory for Ordinary Differential Equations with Multifrequency[J].Acta mathematica scientia,Series A, 2000, 20(3): 329-335.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbA/EN/
http://121.43.60.238/sxwlxbA/EN/Y2000/V20/I3/329
1 FenichelN.Persistenceandsmoothnessofinvariantmanifoldsofflows.IndUnivMathJ,1971,21:193 2 FenichelN.Asymptoticstabilitywithrateconditions.IndianaUnivMATHJ,1974,23:1109-1137 3 FenichelN.Asymptoticstabilitywithrateconditions(Ⅱ).IndianaUnivMathJ,1977,26:81-93 4 FenichelN.Geometricsingularperturbationstheoryforordinarydifferentialequations.JDiffEqs,1979,31:53 5 GuckenheimerJ.Towardsaglobaltheoryofsingularperturbeddynamicalsystem.ProgressinNonlinearDifferentialEquationsandTheirApplications.New YorkHeidelserg,Berlin:SpringerVerlag,1995 6 HallerG,WigginsS.Orbitshomoclinictoresonances,withanapplicationtochaosinthedampedandforcedSineGordonequation.PhisicaD,1992,57:185 7 HallerG,WigginsS.Orbitshomoclinictoresonances:theHamiltoniancase.PhysicaD,1993,66:298-346 8 HallerG,WigginsS.Geometryandchaosnearresonantequilibriaof3DOFHamiltonainsystems.PhysicaD,1996,90:319-365 9 JonesCK R T,KaperTassoJ,KopellNancy.Trackinginvariantmanifoldsuptoexponentiallysmallerrors.SIAMJMathAnal,1996,27(2):558-577 10 陈利平.一类一维阵列的孤波特征.数学物理学报,1999,19(4):361-367 11 GrebenikovE A,RyabovY A.Constructivemethodsintheanalysisofnonlinearsystems.Mir:Moscow,1983 12 ChenLiping.Singularperturbationtheoryforhomoclinicorbitsin2DOF Hamiltoniansystemswithnonautonomousperturbation.ActaMathSci,toappear
Cited
Stability of Periodic Solution for a Discrete Leslie
Predator-prey System
The Existence of Positive Solutions to Boundary Value Problems
of Second Order Singular Differential Equations