Real Clifford analysis,Biregular function vector,Nonlinear boundary value problem.,"/> A Nonlinear Boundary Value Problem for Biregular Function Vectors with Values in Real Clifford

Acta mathematica scientia,Series A ›› 2000, Vol. 20 ›› Issue (1): 121-129.

• Articles • Previous Articles     Next Articles

A Nonlinear Boundary Value Problem for Biregular Function Vectors with Values in Real Clifford

  

  1. Department of Mathematics, Hebei Teacher's University, Shijiazhuang 050016
  • Online:2000-01-07 Published:2000-01-07

Abstract:

In this paper we discuss a nonlinear boundary value problem for biregular function vectors with values in real Clifford analysis:
          A(t1,t2) Φ++(t1,t2)+B(t1,t2) Φ+- (t1,t2)
          +C(t1,t2) Φ-+ (t1,t2)+D(t1,t2) Φ-- (t1,t2)
          =G(t1,t2) F*[t1,t2,Φ++(t1,t2),Φ+-(t1,t2),Φ-+(t1,t2),Φ--(t1,t2)],
Applying the method of integral equations and Schauder's fixedpoint theorem, we proved the existence of the solution for the above problem. And applying contract mapping theorem, we proved the existence and uniqueness for corresponding linear boundary value problems.

Key words:  Real Clifford analysis')"> Real Clifford analysis, Biregular function vector, Nonlinear boundary value problem.

CLC Number: 

  • 30G35
Trendmd