Acta mathematica scientia,Series A ›› 1999, Vol. 19 ›› Issue (2): 219-223.
• Articles • Previous Articles Next Articles
Online:
Published:
Abstract:
The theory of frames is very important for wavelet analysis. For φ∈L2(R) and a>1, b>0, I.Daubechies gave a sufficient condition ensuring{aj/2}φ(aj x-kb):j,k∈Z to be a frame for L2(R).Recently, much effort has spent on the study of the stability of wavelet frames.In this paper, after obtaining a multivariate version of Kadec's 1/4-theorem, we study the stability of wavelet frames when φ, {aj} and {k} have some perturbation simultaneously.In particular, we study the effect of the perturbation to {aj}.
Key words: Frames, Wavelets, Kadec's1/4-theorem.
CLC Number:
Sun Wenchang, Zhou Xingwei. On the stability of wavelet frames[J].Acta mathematica scientia,Series A, 1999, 19(2): 219-223.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbA/EN/
http://121.43.60.238/sxwlxbA/EN/Y1999/V19/I2/219
1 FavierS,ZalikR.OnthestabilityofframesandRieszbases.ApplandCompHarm Anal,1995,2(2):160-173 2 BalanR.StabilitytheoremsforFourierframesandwaveletRieszbases.toappearinJofFourAnalandAppl, 3 周性伟,李勇权.一类不规则小波标架.科学通报,1997,42(12):1252-1254 4 YoungR.AnIntroductiontoNonHarmonicFourierSeries.New York:AcademicPress,1980 5 ChuiCK,ShiXL.Onstabilityboundsofperturbedmultivariatetrigonometricsystems.ApplandCompHarm Anal,1995,3(3):283-287 6 ChuiCK,ShiXL.InequalitiesofLittlewoodPaleytypeforframesandwavelets.SIAMJMathAnal,1993,24(1):263-277 7 龙瑞麟.高维小波分析.北京:世界图书出版公司,1995
Cited
Iterative Solution for Systems of a Class of Abstract Operator Equations and Applications
The Maximal Dilatation and Boundary Dilatation of Quasi-symmetric Mapping