Acta mathematica scientia,Series A ›› 1998, Vol. 18 ›› Issue (S1): 21-26.

Previous Articles     Next Articles

On the Best Constants for Some Operator Inequalities

Yang Changsen, Guo Qiuli   

  1. Department of Mathematics, Henan Normal University, Xinxiang 453002
  • Received:1996-05-13 Revised:1996-09-09 Online:1998-12-26 Published:1998-12-26

Abstract:

Let △ be the unit disk,and H1(△) be the follwing set
H1 (△)={φ(z):φ(z) is analytic in △,|φ(z)|<1,
and there exists a θ∈[0,2π]such that|φ(eiθ<)|=1} Then all the proper contraction on H,we have
φH1sup(△) b2(φ)=2,φH1sup(△)b2(φ)=1 where b2(φ)=supA(||φ'(A)||(1-||A||2)+||φ(A)||2)
b2(φ)=supA(||φ'(A)||(1-||A||2)+infxH||x||=1||φ(A)x||2)On the other hand,if φ(z)=Σk=0n akzk,|φ(z)|<1, then
||φ'(A)||+||φ'(A)|| ≤ 2n where φ(z)=znφ(z-1), and 2 is the best constant for all the choices of n,φ(z) and A.

Key words: Proper contraction, operator polynomial unitary dilatation

Trendmd