数学物理学报 ›› 2009, Vol. 29 ›› Issue (2): 475-485.

• 论文 • 上一篇    下一篇

半平面上无限级Dirichlet级数与随机Dirichlet级数的增长性

  

  1. (1. 韶关学院数学与信息科学学院  广东 韶关 512005; 2. 华南师范大学 数学科学学院  广州 510631)
  • 收稿日期:2007-11-28 修回日期:2008-10-16 出版日期:2009-04-25 发布日期:2009-04-25
  • 基金资助:

    国家自然科学基金(10471048)资助

The Growth of Dirichlet Series and Random Dirichlet Series of Infinite Order in the Half Plane

  1. (1. $College of Mathematics and Informatics,  Shaoguan University, Guangdong Shaoguan  512005; 2. School of Mathematics, South China Normal University, Guangzhou  510631)
  • Received:2007-11-28 Revised:2008-10-16 Online:2009-04-25 Published:2009-04-25
  • Supported by:

    国家自然科学基金(10471048)资助

摘要:

研究了半平面上无限级Dirichlet级数及随机Dirichlet级数的增长性.利用熊庆来的型函数及Newton多边形,在较宽的系数条件下给出了几个引理,讨论了半平面上无限级Dirichlet级数关于型函数U(r)的级及下级与系数的关系. 得到了相应非同分布的无限级随机Dirichlet级数几乎必然(a.s.)有相同的关系.

关键词: 无限级, Dirichlet级数, 随机级数;型函数, 增长级

Abstract:

In this paper, the authors study the growth of Dirichlet series and random Dirichlet series of infinite  order in the half-plane. They prove several lemmas by using the Newton polygon and type-function U( r) of Hiong Kin-lai
 under a much weaker coefficient condition. And  the relations between its order and low order and its coefficients are obtained. For some random Dirichlet series with non-uniformly distribution random variables there are almost surely (a.s.)  same relations.

Key words: Infinite order, Dirichlet series, Random series, Type function, Growth

中图分类号: 

  • 30D25