数学物理学报 ›› 2009, Vol. 29 ›› Issue (2): 399-405.

• 论文 • 上一篇    下一篇

Lie环分解中的Krull-Schmidt定理

  

  1. (湖北大学数学与计算机科学学院 |武汉 430062)
  • 收稿日期:2007-01-08 修回日期:2008-10-15 出版日期:2009-04-25 发布日期:2009-04-25
  • 基金资助:

    国家自然科学基金(10371032)和教育部博士点基金(20050512002)资助

A Krull-Schmidt Theorem for Lie Rings

  1. (School of Mathematics and Computer Science, Hubei University, Wuhan 430062)
  • Received:2007-01-08 Revised:2008-10-15 Online:2009-04-25 Published:2009-04-25
  • Supported by:

    国家自然科学基金(10371032)和教育部博士点基金(20050512002)资助

摘要:

该文得到了Lie环分解的Krull-Schmidt定理: 若L是在理想上满足极大、极小条件的Lie环, 如果

                            L=H1     H2    …    Hr=K1     K2    …    Ks

L的两个Remak分解, 即HiKj是不可分解的, 那么r=s, 并且存在L的一个中心自同构α, 使在适当排列Kj的顺序后,
Hia=Ki, 进一步地, 对任意的k=1, 2, …, r, L=K1    K2    …    Kk    Hk+1    …Hr.如果

                            L=H1    H2    …    H

L的一个Remak分解, 那么这个分解是L的唯一Remak分解当且仅当对L的任意正规自同态θHi0 Hi, i=1, 2, …, r.

关键词: Krull-Schmidt定理, Lie环,  , 直和分解,  , 极大极小条件

Abstract:

In this paper, the authors get the Krull-Schmidt theorem  for Lie rings. Let L be a Lie ring satisfying the maximal and minimal conditions on ideals. If
                                  L = H1    H2         Hr=K1    K2    …    Ks
are two Remak decompositions of L, then r=s and there is a central automorphism α of L such that, after suitable relabeling of the Kj's (if necessary), Hia = Ki and L = K1    K2         Kk    Hk+1    … Hr for k =1, 2, , r. Furthermore, 
L = H1    H2    …    Hr is the only Remak decomposition of L (up to the order of factors of  the direct sums) if and only if Hi0 ≤ Hi for every normal endomorphism θ of L and  i =1, 2, , r.

Key words: Krull-Schmidt theorem, Lie ring, Direct sum decompositions, Maximal and minimal conditions

中图分类号: 

  • 17A01