[1] Ahmed N U, Ding X. A semilinear Mckean-Vlasov stochastic evolution equation in Hilbert space. Stochastic Process Appl, 1995, 60(1): 65--85
[2] Chojnowska-Michalik A, Goldys B. Existence, uniqueness and invariant measures for stochastic semilinear equation on Hilbert spaces. Probab Theory Relat Fields, 1995, 102(3): 331--356
[3] Dawson D A, G\"artner J. Large deviations from the Mckean Vlasov limit for weakly interacting diffusions. Stochastics, 1987, 20(44): 247--308
[4] Da Prato G, Zabczyk J. Regular densities of invariant measures in Hilbert spaces. J Funct Anal, 1995, 130(2): 427--449
[5] Da Prato G, Zabczyk J. Stochastic Equations in Infinite Dimensions. In Encyclopedia of Mathematics and Its Applications 44. Cambridge: Cambridge University Press, 1992
[6] Fuhrman M, Tessitore G. Nonlinear Kolmogorov equations in infinite dimensional spaces: the backward stochastic differential equations approach and applications to optimal control. The Annals of Probability,
2002, 30(3): 1397--1465
[7] Léonard C. Large deviations and law of large numbers for a mean field type interacting particle system. Stochastic Process Appl, 1987, 25(2): 215--235
[8] Nagasawa M, Tanaka H. Diffusion with interactions and collisions between coloured particles and the propogation of chaos. Probab Theory Relat Fields, 1987, 74(2): 161--198
[9] Peszat S, Zabczyk J. Strong Feller property and irreducibility for diffusions on Hilbert spaces. The Annals of Probability, 1995, 23(1): 157--172
[10] Zabczyk J. Parabolic Equations on Hilbert Spaces, Stochastic PDE's and Kolmogorov Equations in Infinite Dimensions. In: Lecture Notes in Math. Berlin: Springer, 1999, 1715: 117--213
[11] Zhang X. Lp -Theory of semilinear SPDEs on general measure spaces and applications. J Funct Anal, 2006, 239: 44--75
|