数学物理学报 ›› 2009, Vol. 29 ›› Issue (2): 297-302.

• 论文 • 上一篇    下一篇

极大γt - 临界图

  

  1. (华中师范大学数学与统计学院 |武汉 430079)
  • 收稿日期:2007-10-11 修回日期:2008-12-06 出版日期:2009-04-25 发布日期:2009-04-25
  • 基金资助:

    国家自然科学基金(10671081, 10571071)资助.

On Maximum γt - Critical Graphs

  1. (Department of Mathematics and Statistics, Central China Normal University, Wuhan 430079)
  • Received:2007-10-11 Revised:2008-12-06 Online:2009-04-25 Published:2009-04-25
  • Supported by:

    国家自然科学基金(10671081, 10571071)资助.

摘要:

如果对没有孤立点的图G 的任何一个不相邻于一次点的点v, 子图G-v 的全控制数小于图G 的全控制数, 则称G 是全控点临界的.  这类图又被称为  γt - 临界的. 进一步地, 如此一个图的全控制数为k, 则称它为k-γt - 临界的. 该文主要是给出一个满足n= Δ(G)(γt(G)-1)+1的图类的结构性的证明.

 

关键词: 点临界, 全控制集, 全控制数, 冠图, Cayley 图

Abstract:

A graph G with no isolated vertex is total domination vertex critical if for any vertex v of G that is not adjacent to a vertex of degree one, the total domination number of G-v is less than that of G. These graphs are called γt-critical. If such a graph G has total domination number k,  it is called k-γt-critical. In this paper, the authors give the structure proof of those graphs satisfying n=Δ(G)(γt(G)-1)+1.

中图分类号: 

  • 05C69