数学物理学报

• 论文 • 上一篇    下一篇

具有阶段结构的Lotka-Volterra合作系统的稳定性和行波解

吴事良;李万同   

  1. 西安电子科技大学应用数学系 西安 710071;

    兰州大学数学与统计学院 兰州 730000;

  • 收稿日期:2005-12-18 修回日期:2006-12-15 出版日期:2008-06-25 发布日期:2008-06-25
  • 通讯作者: 吴事良
  • 基金资助:
    92D25; 34D23; 35K57

Stability and Traveling Fronts in Lotka-Volterra Cooperation

Model with Stage Structure

Wu Shiliang ;Li Wantong

  

  1. Department of Applied Mathematics, Xidian University, Xi'an 710071;

    School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000

  • Received:2005-12-18 Revised:2006-12-15 Online:2008-06-25 Published:2008-06-25
  • Contact: Wu Shiliang

摘要: 文建立并研究了一个两物种成年个体相互合作的时滞反应扩散模型.利用线性化稳定性方法和Redlinger上、下解方法证明了该模型具有简单的动力学行为,即零平衡点和边界平衡点是不稳定的,而唯一的正平衡点是全局渐近稳定的.同时, 利用Wang, Li 和Ruan建立的具有非局部时滞的反应扩散系统的波前解的存在性,证明了该模型连接零平衡点与唯一正平衡点的波前解的存在性.

关键词: 合作, 时滞, 波前解, 全局稳定性, 阶段结构, 反应扩散方程

Abstract: In this paper, the authors derive and study a delayed diffusion system, which models the interaction between the two species, the adult members of
which are in cooperation. By using the method of sub- and super-solutions due to Redlinger, we show that the diffusive delay model generates simple global dynamics, i.e., the zero steady state and the boundary equilibria are linear unstable and the unique positive steady state is globally asymptotically stable. We also establish the existence of traveling wave fronts connecting the zero solution of this equation with the unique positive steady state.
The approach used in this paper is the upper-lower solutions technique and the monotone iteration recently developed by Wang, Li and Ruan for reaction-diffusion systems with spatio-temporal delays.

Key words: Cooperation, time delay, traveling wave front, global stability, stage structure, reaction-diffusion equation

中图分类号: 

  • 92D25