数学物理学报

• 论文 • 上一篇    下一篇

集值映射的Henig有效次微分及其稳定性

余国林;刘三阳   

  1. 西安电子科技大学应用数学系 西安 710071;

    北方民族大学信息与系统科学研究所 银川 750021

  • 收稿日期:2006-04-21 修回日期:2007-09-13 出版日期:2008-06-25 发布日期:2008-06-25
  • 通讯作者: 余国林
  • 基金资助:
    国家自然科学基金(60674708)、宁夏高等学校科学研究项目(200711)、北方民族大学校内科学研

The Henig Efficient Subdifferential of Set-valued Mapping

and Stability

Yu Guolin;Liu Sanyang   

  1. Department of Applied Mathematics, Xidian University, Xi'an 710071;

    Research Institute of Information and System Computation Science, North National University, Yinchuan 750021

  • Received:2006-04-21 Revised:2007-09-13 Online:2008-06-25 Published:2008-06-25
  • Contact: Yu Guolin

摘要: 该文在赋范线性空间中对集值映射引入锥- Henig有效次梯度和锥- Henig有效次 微分的概念. 借助凸集分离定理证明了锥- Henig有效次微分的存在性, 并且建立了线性泛函为锥- Henig有效次梯度的充要条件. 最后, 对于一类参数 扰动集值优化问题讨论了其在Henig有效意义下的稳定性.

关键词: 集值映射, Henig有效性, 次微分, 稳定性.

Abstract: In normed linear spaces, the concepts of cone-Henig efficient subgradient
and cone-Henig efficient subdifferential for a set-valued mapping are introduced. By using the convex set separation theorem, the existence theorem for cone-Henig efficient subdifferential is proposed, and the sufficient
and necessary condition for a linear functional being a cone-Henig efficient subgradient is established. Finally, the stability problem for a kind of perturbed set-valued opimization problem is considered in sense of Henig efficiency.

Key words: Set-valued mapping, Henig efficiency, Subdifferential, stability

中图分类号: 

  • 90C26