数学物理学报

• 论文 • 上一篇    下一篇

具有随机效应和AR(1)误差的非线性纵向数据模型中组间方差和自相关系数的齐性检验

林金官;韦博成   

  1. 东南大学数学系 南京 210096
  • 收稿日期:2005-12-15 修回日期:2006-12-07 出版日期:2008-04-25 发布日期:2008-04-25
  • 通讯作者: 林金官
  • 基金资助:
    国家社会科学基金(04BTJ002)资助

Testing for Homogeneity of Between-individual Variances and Autocorrelation Coefficients in Longitudinal Nonlinear Models

with Random Effects and AR(1) Errors

Lin Jinguan; Wei Bocheng
  

  1. Department of Mathematics, Southeast University, Nanjing 210096
  • Received:2005-12-15 Revised:2006-12-07 Online:2008-04-25 Published:2008-04-25
  • Contact: Lin Jinguan

摘要: 组间方差和自相关系数的齐性是纵向数据分析的基本假设之一,然而这种假设需要进行统计检验. Zhang \& Weiss$^{[15]}$ 讨论了线性随机效应模型的组间和组内方差齐性的检验问题;林金官 \& 韦博成$^{[10]}$ 研究了具有AR(1)误差但没有随机效应的非线性模型的自相关系数的齐性检验.该文研究具有随机效应和AR(1)误差的非线性模型的组间方差和自相关系数的齐性检验问题,构造了几个score检验统计量, 并通过Monte Carlo模拟方法研究了检验统计量的性质.最后利用该文的方法分析一组实际数据和一组模拟数据.

关键词: AR(1)误差, 自相关系数, 异方差, 非线性回归, 随机效应, Score 检验

Abstract: Homogeneity of between-individual variances and/or autocorrelation coefficients is one of standard assumptions in longitudinal analysis. However, this assumption needs to be tested statistically. Zhang \& Weiss$^{[15]}$ discussed the tests for heterogeneity of between - and/or within-individual variances in linear models with random effects. Lin \& Wei$^{[10]}$ considered the tests for homogeneity of between-individual autocorrelation
coefficients in nonlinear models with AR(1) errors but without random effects. However, for such models, the tests for homogeneity of autocorrelation coefficients between individuals as autocorrelation on all individuals exists, have not been considered. This paper is devoted to the tests for homogeneity of between-individual variances and/or autocorrelation coefficients
in the framework of nonlinear regression models with random effects and AR(1) errors. Several diagnostic tests using score statistic are constructed. The properties of test statistics are nvestigated through Monte Carlo simulations. An real-data and simulated-dat examples are analyzed in Section 5 to illustrate the proposed methodology.

Key words: AR(1) errors, Autocorrelation coefficient, Heteroscedasticity, Nonlinear regression, Random effects, Score test

中图分类号: 

  • 62J02