数学物理学报

• 论文 • 上一篇    下一篇

重调和方程非平凡解的存在性

唐春霞;张正杰   

  1. 张正杰华中师范大学数学与统计学学院 武汉 430079
  • 收稿日期:2005-08-15 修回日期:2006-12-19 出版日期:2008-04-25 发布日期:2008-04-25
  • 通讯作者: 张正杰
  • 基金资助:
    国家自然科学基金(10471052)资助

The Existence of a Nontrivial Solution for Biharmonic Equation

Tang Chunxia; Zhang Zhengjie   

  1. Department of Mathematics and Statistics. Central China Normal University, Wuhan 430079
  • Received:2005-08-15 Revised:2006-12-19 Online:2008-04-25 Published:2008-04-25
  • Contact: Zhang Zhengjie

摘要: 该文主要研究$R^N(N>4)$上
重调和方程
\begin{eqnarray*}
\left\{
\begin{array}{ll}
\Delta^2 u+\lambda u=\overline{f}(x,u);\\
\lim\limits_{|x|\rightarrow\infty}u(x)=0;\\
u\in{H^2}(R^N),\hspace{0.1cm}x\in{R^N }
\end{array}
\right.
\end{eqnarray*}
的非平凡解的存在性.
为了便于研究,将方程转化为$R^N(N>4)$ 上带有扰动项的重调和方程
\begin{eqnarray*}
\left\{
\begin{array}{ll}
\Delta^2 u+\lambda u=f(u)+\varepsilon g(x,u);\\
\lim\limits_{|x|\rightarrow\infty}u(x)=0;\\
u\in{H^2}(R^N),\hspace{0.1cm}x\in{R^N } .
\end{array}
\right.
\end{eqnarray*}
并运用扰动方法进行研究(其中$f(u)=\lim\limits_{|x|\longrightarrow \infty}\overline{f}(x,u),
\varepsilon g(x,u)=\overline{f}(x,u)-f(u),\varepsilon$为任意小常数),
证明了在适当条件下上述问题非平凡解的存在性.

关键词: 存在性, 重调和方程, 扰动

Abstract:

The paper mainly studies biharmonic equation in $R^N(N>4)$ as
$$
\left\{
\begin{array}{ll}
\Delta^2 u+\lambda u=\overline{f}(x,u);\\
\lim\limits_{|x|\rightarrow\infty}u(x)=0;\\
u\in{H^2}(R^N),\hspace{0.1cm}x\in{R^N }.
\end{array}
\right.
$$

For studying it, the authors change it to the biharmonic equation with a perturbation in $R^N(N>4)$ as
$$
\left\{
\begin{array}{ll}
\Delta^2 u+\lambda u=f(u)+\varepsilon g(x,u);\\
\lim\limits_{|x|\rightarrow\infty}u(x)=0;\\
u\in{H^2}(R^N),\hspace{0.1cm}x\in{R^N }
\end{array}
\right.
$$
and use the perturbation method to study it (where
$f(u)=\lim\limits_{|x|\longrightarrow \infty}\overline{f}(x,u),\varepsilon g(x,u)=\overline{f}(x,u)-f(u),\varepsilon$
is a small constant).

The authors can prove the existence of nontrivial
solutions of the above question under some conditions.

Key words: Existence, Biharmonic equation, Perturbative

中图分类号: 

  • 35J70