数学物理学报

• 论文 • 上一篇    下一篇

重调和方程非平凡解的存在性

唐春霞;张正杰   

  1. 张正杰华中师范大学数学与统计学学院 武汉 430079
  • 收稿日期:2005-08-15 修回日期:2006-12-19 出版日期:2008-04-25 发布日期:2008-04-25
  • 通讯作者: 张正杰
  • 基金资助:
    国家自然科学基金(10471052)资助

The Existence of a Nontrivial Solution for Biharmonic Equation

Tang Chunxia; Zhang Zhengjie   

  1. Department of Mathematics and Statistics. Central China Normal University, Wuhan 430079
  • Received:2005-08-15 Revised:2006-12-19 Online:2008-04-25 Published:2008-04-25
  • Contact: Zhang Zhengjie

摘要: 该文主要研究RN(N>4)
重调和方程
{Δ2u+λu=¯f(x,u);lim|x|u(x)=0;uH2(RN),xRN


的非平凡解的存在性.
为了便于研究,将方程转化为RN(N>4) 上带有扰动项的重调和方程
{Δ2u+λu=f(u)+εg(x,u);lim|x|u(x)=0;uH2(RN),xRN.

并运用扰动方法进行研究(其中f(u)=lim|x|¯f(x,u),εg(x,u)=¯f(x,u)f(u),ε为任意小常数),
证明了在适当条件下上述问题非平凡解的存在性.

关键词: 存在性, 重调和方程, 扰动

Abstract:

The paper mainly studies biharmonic equation in RN(N>4) as
{Δ2u+λu=¯f(x,u);lim|x|u(x)=0;uH2(RN),xRN.

For studying it, the authors change it to the biharmonic equation with a perturbation in RN(N>4) as
{Δ2u+λu=f(u)+εg(x,u);lim|x|u(x)=0;uH2(RN),xRN


and use the perturbation method to study it (where
f(u)=lim|x|¯f(x,u),εg(x,u)=¯f(x,u)f(u),ε
is a small constant).

The authors can prove the existence of nontrivial
solutions of the above question under some conditions.

Key words: Existence, Biharmonic equation, Perturbative

中图分类号: 

  • 35J70