数学物理学报

• 论文 • 上一篇    下一篇

超Poincare不等式在Lp空间上的推广及应用

刘伟; 孙国正   

  1. 北京师范大学数学科学学院 北京 100875
  • 收稿日期:2005-11-30 修回日期:2006-09-25 出版日期:2007-10-25 发布日期:2007-10-25
  • 通讯作者: 刘伟
  • 基金资助:
    国家自然科学基金创新群体研究基金(NSFC10121101)和安徽省教育厅自然科学研究基金

Generalization and Application of Super-Poincare Inequality on Lp-space



Liu Wei; Sun Guozheng   

  1. School of Mathematical Science, Beijing Normal University, Beijing 100875
  • Received:2005-11-30 Revised:2006-09-25 Online:2007-10-25 Published:2007-10-25
  • Contact: Liu Wei

摘要: 该文建立了Lp(μ )空间上的超Poincare不等式,得到了Lp(μ) 上半群的半紧性和紧性的充要条件及相应的扰动结果,同时给出超Poincare不等式成立的一个充分条件,推广了L2(μ )$上的相关结论.作为应用,文中最后讨论了黎曼流形上一类非对称扩散算子的本质谱.

关键词: 超Poincare不等式, 紧半群, 渐近核, 扰动, 本质谱

Abstract: The authors establish the super-Poincare inequality on Lp-space with respect to a measure space, and obtain some necessary and sufficient conditions about semicompact and compact property of semigroup and the perturbation result. Meanwhile, a sufficient condition for super-Poincare inequality is shown, which generalizes some known results obtained on the L2-space. As applications, the essential spectrum of a class of non-symmetric diffusion operators on Riemannian manifold is studied.

Key words: Super-Poincare inequality, Compact semigroup, Asympotic kernel, Perturbation, Essential spectrum

中图分类号: 

  • 47D07