数学物理学报

• 论文 • 上一篇    下一篇

高维数据判别分析中的特征选择

谭鲜明; 张润楚   

  1. 南开大学数学学院\quad 天津 300071
  • 收稿日期:2004-10-23 修回日期:2006-03-10 出版日期:2006-10-25 发布日期:2006-10-25
  • 通讯作者: 谭鲜明
  • 基金资助:
    国家自然科学基金(NSSF10171051)资助

Modifying the Proof of a Lemma in Mixture Models

Tan Xianming; Zhang Runchu   

  1. School of Mathematics, Nankai University, Tianjin 300071
  • Received:2004-10-23 Revised:2006-03-10 Online:2006-10-25 Published:2006-10-25
  • Contact: Tan Xianming

摘要: 对高维数据进行判别分析,典型的策略包含数据压缩、特征提取与特征选择三步.
该文对于选择合适的特征进行判别分析提出了一个定理,并应用这个定理对常用的主成分判别
方法作了改进.最后,作者把改进的方法与两种常用的方法应用于一个神经生理试验数据的判
别分析.结果表明,在保证判别能力的同时,改进后的方法下用于判别的特征减少了

关键词: 判别分析, 高维数据, 主成分分析, 离散小波变换, 最优特征子集

Abstract: Motivated by a real life example from neuroscience, the authors present a theoretical frame for feature selection in discriminant analysis of very high-dimensional data. In light of a theorem, the authors provide a modification to a procedure, which is commonly-employed, of discriminant analysis of very
high-dimensional data. The modified procedure works are better thantwo other popular procedures in this example in that it needsfewer features and the classification error is smaller

Key words: Discrete wavelet transformation, Discriminant analysis, High-dimensional data, Optimal subsets of features, Principal component analysis

中图分类号: 

  • 53C23