黄元秋; 赵霆雷
Huang Yuanqiu; Zhao Tinglei
摘要: The well known Zarankiewicz' conjecture is said that the crossing number of the complete bipartite graph Km,n (m≤ n) is Z(m,n), where Z(m,n)=\lfloor\frac{m}{2}\rfloor\lfloor\frac{m-1}{2}\rfloor\lfloor\frac{n}{2}\rfloor$$\lfloor\frac{n-1}{2}\rfloor$ (for any real number x, $\lfloor x\rfloor$ denotes the maximal integer no more than x). Presently, Zarankiewicz' conjecture is proved true only for the case m≤ 6. In this article, the authors prove that if Zarankiewicz' conjecture holds for m≤9, then the crossing number of the complete tripartite graph K1,8,n is $Z(9, n)+ 12\lfloor\frac{n}{2}\rfloor$.
中图分类号: