数学物理学报

• 论文 • 上一篇    下一篇

关于 Radicaltotal 环上的投射模

冯良贵; 朴志会   

  1. 国防科技大学数学与系统科学系, 长沙 410073
  • 收稿日期:2005-12-15 修回日期:2006-09-22 出版日期:2007-06-25 发布日期:2007-06-25
  • 通讯作者: 冯良贵
  • 基金资助:
    教育部留学回国基金、国防科技大学基础研究项目资助

On Projectives over Radical Total Rings

Feng Lianggui; Piao Zhihui   

  1. Department of Mathematics and System Science, National University of Defense Technology, Changsha 410073
  • Received:2005-12-15 Revised:2006-09-22 Online:2007-06-25 Published:2007-06-25
  • Contact: Feng Lianggui

摘要: 文中给出了Radicaltotal环上投射模的分解定理. 对一个 ~uniform 维数有限的 Totalfree 环 R, 该文证明 R 是一个总体维数≤ 1 的诺特环, 且 R上的任何投射模必同构于$ \bigoplus\limits_{i\in I}Re_{i}$, 其中每个 $e_{i}$ 均为 $R$ 的非零幂等元.
此外, 文中还给出了一些相关的例子.

关键词: Radicaltotal 环, 分解, 总数, 幂等元

Abstract: The decomposition theorems on projective modules over radical total rings are built in this paper. For a total free ring $R$ with $u.{\rm dim}_{R}R < \infty$, it is showed that $R$ is Noetherian with gldim$R \leqslant 1$, and any projective module $P$ over $R$ is isomorphic to $ \bigoplus\limits_{i\in
I}Re_{i}$, in which each $e_{i}$ is a nonzero idempotent in $R$.
Some examples are also given.

Key words: Radicaltotal ring, Decomposition, Total, Idempotent

中图分类号: 

  • 16E50