数学物理学报

• 论文 • 上一篇    下一篇

无爪3 -正则图的独立数

王春香   

  1. (华中师范大学数学与统计学院 武汉 430079)
  • 收稿日期:2006-06-21 修回日期:2007-09-20 出版日期:2009-02-25 发布日期:2009-02-25
  • 通讯作者: 王春香
  • 基金资助:
    国家自然科学基金(10571071, 10671081)资助.

Independence Number in Claw-free Cubic Graphs

Wang Chunxiang   

  1. (Department of Mathematics, Huazhong Normal University, Wuhan 430079)
  • Received:2006-06-21 Revised:2007-09-20 Online:2009-02-25 Published:2009-02-25
  • Contact: Wang Chunxiang

摘要: 如果图G的一个集合X中任两个点不相邻, 则称 X 为独立集合. 如果 N[X]=V(G), 则称X是一个控制集合. i(G)(β(G))分别表示所有极大独立集合的最小(最大)基数. γ(G)(Γ(G))表示所有极小控制集合的最小(最大)基数. 在这篇论文中, 作者证明如下结论: (1) 如果 GRGn阶3 -正则图, 则 γ(G)= i(G), β(G)=n/3. (2) 每个n阶连通无爪3 -正则图 G, 如果 G(G≠ K4)
且不含诱导子图K4-e, 则 β(G) =n/3.

关键词: 3 -正则图, 控制数, 独立控制数, 着色.

Abstract: A set X is independent if no two vertices of X are adjacent. A set X is dominating if N[X]=V(G). A dominating set X is minimal if no set X\{x} with x∈ X
is dominating. The independence number i(G)(\beta(G)) is the minimum (maximum) cardinality of a maximal independent set of G. The domination number γ(G) (the upper domination number Γ(G)) is the minimum (maximum) cardinality of a minimal dominating set of G. In this paper, we prove that: (1) if G ∈ R and G is a cubic graph of order n, then γ(G)=i(G), β(G)=n/3; (2) for every connected claw-free cubic graph G of order n, if G(G≠ K4) contains no K4-e as induced subgraph, then β(G)=n/3.

Key words: Cubic graph, The domination number, The independence number, Colouring.

中图分类号: 

  • 05C