数学物理学报 ›› 2025, Vol. 45 ›› Issue (1): 180-188.

• • 上一篇    下一篇

随机扰动下三阶MQ拟插值在导数逼近中的应用研究

张胜良1,*, 钱艳艳2   

  1. 1南京林业大学经济管理学院 南京 210037;
    2南京林业大学理学院 南京 210037
  • 收稿日期:2024-03-22 修回日期:2024-07-09 出版日期:2025-02-26 发布日期:2025-01-08
  • 通讯作者: *张胜良,E-mail:10110180035@fudan.edu.cn
  • 作者简介:钱艳艳,E-mail:qianyanyan@njfu.edu.cn
  • 基金资助:
    教育部人文社会科学研究 `基于两种市场决策机制的林业碳汇价值评估研究-实物期权模型的改进与应用' 项目 (21YJC790162) 和江苏省社科基金 "双碳" 目标下苏北杨树产业碳汇价值实现机制及支持政策研究 (22EYB010)

Application of Cubic MQ Quasi-Interpolation in Derivative Approximations Under Random Perturbation

Zhang Shengliang1, Qian Yanyan2   

  1. 1College of Economics and Management, Nanjing Forestry University, Nanjing 210037;
    2College of Science, Nanjing Forestry University, Nanjing 210037
  • Received:2024-03-22 Revised:2024-07-09 Online:2025-02-26 Published:2025-01-08
  • Supported by:
    Humanities and Social Sciences Fund of the Ministry of Education `Research on forest carbon sink value assessment based on two market decision mechanisms: Improvement and application of real option model' (21YJC790162) and the Jiangsu Provincial Social Science Foundation (22EYB010)

摘要: 该文基于三阶 MQ (multiquadric) 拟插值算子, 提出了在随机扰动背景下有效逼近高阶导数的数值方法, 并给出了相应的数值算例和误差估计. 试验表明, 该方法相比已有方法精度更高、更稳定、更有效.

关键词: 导数逼近, 随机扰动, MQ 拟插值, 误差估计

Abstract: This paper proposes a numerical method that can effectively approximate high-order derivatives under random perturbation based on the cubic MQ (multiquadric) quasi-interpolation operator. Corresponding numerical examples and error estimates are given. Numerical experimental results show that the proposed method is more accurate, more stable and more effective than the existing methods.

Key words: derivative approximation, random perturbation, multi-quadric quasi-interpolation, error estimations

中图分类号: 

  • O241.5