数学物理学报 ›› 2025, Vol. 45 ›› Issue (1): 1-30.

• •    下一篇

拟线性薛定谔方程组在有界区域上的正规化解

张倩   

  1. 清华大学数学科学系 北京 100084; 福建师范大学数学与统计学院 福州 350117
  • 收稿日期:2023-07-19 修回日期:2024-09-09 出版日期:2025-02-26 发布日期:2025-01-08
  • 作者简介:张倩,E-mail:zhangqian9115@mail.tsinghua.edu.cn
  • 基金资助:
    福建省高校数学学科联盟科研项目专项资金 (2025SXLMQN04)

Normalized Solutions of the Quasilinear Schrödinger System in Bounded Domains

Zhang Qian   

  1. Department of Mathematical Sciences, Tsinghua University, Beijing 100084; School of Mathematics and Statistics, Fujian Normal University, Fuzhou 350117
  • Received:2023-07-19 Revised:2024-09-09 Online:2025-02-26 Published:2025-01-08
  • Supported by:
    Fujian Alliance of Mathematics (2025SXLMQN04)

摘要: 该文关注以下非线性耦合方程组
$\left\{\begin{array}{l} -\Delta u_{1}+\omega_{1} u_{1}-\frac{1}{2} \Delta\left(u_{1}^{2}\right) u_{1}=\mu_{1}\left|u_{1}\right|^{p-1} u_{1}+\beta\left|u_{2}\right|^{\frac{p+1}{2}}\left|u_{1}\right|^{\frac{p-3}{2}} u_{1} \\ -\Delta u_{2}+\omega_{2} u_{2}-\frac{1}{2} \Delta\left(u_{2}^{2}\right) u_{2}=\mu_{2}\left|u_{2}\right|^{p-1} u_{2}+\beta\left|u_{1}\right|^{\frac{p+1}{2}}\left|u_{2}\right|^{\frac{p-3}{2}} u_{2} \\ \int_{\Omega}\left|u_{i}\right|^{2} \mathrm{~d} x=\rho_{i}, \quad i=1,2, \quad\left(u_{1}, u_{2}\right) \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{2}\right) \end{array}\right.$
以及线性耦合方程组
$\left\{\begin{array}{l} -\Delta u_{1}+\omega_{1} u_{1}-\frac{1}{2} \Delta\left(u_{1}^{2}\right) u_{1}=\mu_{1}\left|u_{1}\right|^{p-1} u_{1}+\beta u_{2} \\ -\Delta u_{2}+\omega_{2} u_{2}-\frac{1}{2} \Delta\left(u_{2}^{2}\right) u_{2}=\mu_{2}\left|u_{2}\right|^{p-1} u_{2}+\beta u_{1} \\ \int_{\Omega}\left|u_{i}\right|^{2} \mathrm{~d} x=\rho_{i}, \quad i=1,2, \quad\left(u_{1}, u_{2}\right) \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{2}\right) \end{array}\right.$
其中 $\Omega\subset\mathbb R^N(N\geq1)$ 是一个有界光滑区域,$\omega_i,\ \beta\in\mathbb R$, $\mu_i,\ \rho_i>0,\ i=1,2.$ 而且, 若 $p>1$, $N=1,2$ 且若 $1<p\leqslant\frac{3N+2}{N-2}$, $N\geqslant3$. 应用变量替换, 一方面,证明了非线性耦合方程组正规化解的存在性和轨道稳定性, 以及当 $\beta\rightarrow-\infty$ 时正规化解的极限行为. 另一方面, 应用极小化约束方法来获得线性耦合方程组的正规化解的存在性. 与之前的一些结果相比, 将现有结果扩展到了拟线性薛定谔方程组, 并获得了线性耦合情形下的正规化解.

关键词: 线性与非线性耦合, 有界区域, 变量替换, 正规化解, 极限行为

Abstract: This paper is concerned with the following nonlinear coupled system
$\left\{\begin{array}{l} -\Delta u_{1}+\omega_{1} u_{1}-\frac{1}{2} \Delta\left(u_{1}^{2}\right) u_{1}=\mu_{1}\left|u_{1}\right|^{p-1} u_{1}+\beta\left|u_{2}\right|^{\frac{p+1}{2}}\left|u_{1}\right|^{\frac{p-3}{2}} u_{1} \\ -\Delta u_{2}+\omega_{2} u_{2}-\frac{1}{2} \Delta\left(u_{2}^{2}\right) u_{2}=\mu_{2}\left|u_{2}\right|^{p-1} u_{2}+\beta\left|u_{1}\right|^{\frac{p+1}{2}}\left|u_{2}\right|^{\frac{p-3}{2}} u_{2} \\ \int_{\Omega}\left|u_{i}\right|^{2} \mathrm{~d} x=\rho_{i}, \quad i=1,2, \quad\left(u_{1}, u_{2}\right) \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{2}\right) \end{array}\right.$
and linear coupled system
$\left\{\begin{array}{l} -\Delta u_{1}+\omega_{1} u_{1}-\frac{1}{2} \Delta\left(u_{1}^{2}\right) u_{1}=\mu_{1}\left|u_{1}\right|^{p-1} u_{1}+\beta u_{2} \\ -\Delta u_{2}+\omega_{2} u_{2}-\frac{1}{2} \Delta\left(u_{2}^{2}\right) u_{2}=\mu_{2}\left|u_{2}\right|^{p-1} u_{2}+\beta u_{1} \\ \int_{\Omega}\left|u_{i}\right|^{2} \mathrm{~d} x=\rho_{i}, \quad i=1,2, \quad\left(u_{1}, u_{2}\right) \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{2}\right) \end{array}\right.$
where $\Omega\subset\mathbb R^N(N\geq1)$ is a bounded smooth domain, $\omega_i,\ \beta\in\mathbb R$, $\mu_i,\ \rho_i>0,\ i=1,2.$ Moreover, $p>1$ if $N=1,2$ and $1<p\leqslant\frac{3N+2}{N-2}$ if $N\geqslant3$. Using change of variables, on the one hand, we prove the existence and stability of normalized solutions in nonlinear coupled system and the limiting behavior of normalized solutions as $\beta\rightarrow -\infty$. On the other hand, we apply the minimization constraint technique to obtain the existence of normalized solutions for linear coupled system. Compared with some previous results, we extend the existing results to the quasilinear Schrödinger system and also obtain normalized solutions for the linear coupling case.

Key words: linear and nonlinear coupled, bounded domains, change of variables, normalized solution, limiting behavior

中图分类号: 

  • O177.91