[1] Adimy M., A. Elazzouzi and K. Ezzinbi, Bohr-Neugebauer type theorem for some partial neutral functional diferential equations, Nonlinear Analysis Theory Methods and Applications, 2007, 66 no.5, 1145–1160. [2] Amerio L, Prouse G.Almost periodic functions and functional equations. Van Nos- trand Reinhold, New York, 1971. [3]Beltramo A, Hess P.On the principal eigenvalue of a periodic-parabolic operator[J].Communications in Partial Diferential Equations, 1984, 9(9):919-941 [4] Benkhalti R., Bouzahir H. and Ezzinbi K., Existence of a periodic solution for some partial functional diferential equations with ininite delay, Journal of Mathematical Analysis and Applications, 2001, 256 no.1, 257–280. [5] Corduneanu C.Almost periodic oscillations and waves. Springer, New York, 2009. [6]Esteban M.J. On periodic solutions of superlinear parabolic problems[J].Transactions of the American Mathematical Society, 1986, 293(1):171-189 [7] Evans Lawrence C.Partial diferential equations. Proceeding of the American Math- matical Society, Vol.19, 2010. [8]Esteban M.J. A remark on the existence of positive periodic solutions of superlinear parabolic problems[J].Proceeding of the American Mathematical Society, 1988, 102(1):131-136 [9] Frechet M.Les fonctions asymptotiquement presque-periodiques continues, C.R. A- cad. Sei. Paris, 1941, 213: 520–522. [10] Frechet M.Les fonctions asymptotiquement presque-periodiques, Revue Sei., 1941, 79: 341–354. [11] Fink A.M. Almost periodic diferential equations. Lecture Notes in Mathematics, Vol. 377, Springer-Verlag, 1974. [12] Furumouchi T., Naito T. and Minh N. V., Boundedness and almost periodicity of solutions of partial functional diferential equations, Journal of Diferential Equations, 2002, 180 no.1, 125–152. [13] Hu Z.S., Mingarelli A. B., Almost periodicity of solutions for almost periodic evolu- tions equations equations, Diferential Intergral Equations, 2005 18, no.4, 469–480. [14] Janpou N., Almost periodic solutions to systems of parabolic equations, International Journal of Stochastic Analysis, 2015, 7 no.4, 581–586. [15]Ji S, Yin J.X,Li Y[J].Positive periodic solutions of the weighted p-Laplacian with nonlinear sources. Discrete and Continuous Dynamical Systems, 2018, 38(5):2411- [16] Levitan B.M, Zhikov V. V. Almost periodic functions and diferential equations, trans- lated from the Russian by L. W. Longdon. Cambridge University Press, Cambridge- NewYork, 1982. [17]Quittner P.Multiple equilibria,periodic solutions and a priori bounds for solutions in superlinear parabolic problems[J].Nonlinear Diferential Equations & Applications Nodea, 2004, 11(2):237-258 [18] Rao A.S. On diferential operators with Bohr-Neugebauer type property, Journal of Diferential Equations, 1973, 13 (3): 490–494. [19] Rossi L.Liouville type results for periodic and almost periodic linear operators, An- nales de Linstitut Henri Poincare Non Lineaire Analysis, 2009, 26(6): 2481–2502. [20] Schmitt K., Ward J., Almost periodic solutions of nonlinear second order diferential equations, Results in Mathematics, 1992, 21, no.1-2, 190–199. [21] Wang Y.F, Yin J. X, Wu Z. Q. Periodic solutions of evolution p-Laplacian equation- s with nonlinear sources. Journal of Mathematical Analysis & Applications, 1998), 219(1): 76–96. [22]Xie Y, Lei P.On global boundedness,stability and almost periodicity of solutions for heat equations[J].Funkcialaj Ekvacioj, 2019, 62(2):191-208 [23] Xie, Y., Lei, P., Yin, J. X. Boundedness and stability of global solutions for some superlinear and nonautonomous heat equations, J. Diferential Equations, 2023, 370: 167–201. [24]Xie Y, Lei P.Almost periodic solutions of sublinear heat equations[J].Proceeding of the American Mathematical Society, 2017, 146(1):233-245 [25] Yang Y.S., Almost periodic solutions of nonlinear parabolic equation, Bulletin of the Australian Mathematical Society, 1988 38, 231–238. [26]Yin J.X,Jin C[J].H. Periodic solutions of the evolutionary p-Laplacian with nonlinear sources. Journal of Mathematical Analysis & Applications, 2010, 368(2):604-622 [27]Yoshizawan T, Singh V.Stability theory and the existence of periodic solutions and almost periodic solutions[J].IEEE Transactions on Systems Man & Cybernetics, 1975, 9(5):314-314 [28] Zhang C.Y. Almost periodic type functions and ergodicity. Science Press, 2003. [29] Zheng, H.Ding, G. N .Gu cer cekata, The space of continuous periodic functions is a set ofirst category in AP(X), J. Funct. Spaces Appl., (2013) Art. ID 275702, 3 pp.
|