数学物理学报 ›› 2024, Vol. 44 ›› Issue (6): 1630-1651.
收稿日期:
2023-06-15
修回日期:
2024-04-16
出版日期:
2024-12-26
发布日期:
2024-11-22
通讯作者:
赵静
E-mail:zhaojing200103@163.com;g13526199036@163.com
作者简介:
郭晨正, Email: 基金资助:
Received:
2023-06-15
Revised:
2024-04-16
Online:
2024-12-26
Published:
2024-11-22
Contact:
Jing Zhao
E-mail:zhaojing200103@163.com;g13526199036@163.com
Supported by:
摘要:
针对一类非凸非光滑不可分优化问题, 该文基于邻近交替线性极小化算法, 结合两步惯性外推和 Bregman 距离提出了一种新的迭代算法. 通过构造适当的效益函数, 利用 Kurdyka-Łojasiewicz 性质, 证明了所提出算法生成的迭代序列具有收敛性. 最后, 将该算法应用于稀疏非负矩阵分解、信号恢复、二次分式规划问题, 通过数值算例表明了提出算法的有效性.
中图分类号:
赵静, 郭晨正. 非凸非光滑优化问题的两步惯性 Bregman 邻近交替线性极小化算法[J]. 数学物理学报, 2024, 44(6): 1630-1651.
Jing Zhao, Chenzheng Guo. Two-Step Inertial Bregman Proximal Alternating Linearized Minimization Algorithm for Nonconvex and Nonsmooth Problems[J]. Acta mathematica scientia,Series A, 2024, 44(6): 1630-1651.
[1] | 简金宝, 林惠, 马国栋. 大规模非凸不可分优化问题的分裂序列二次规划算法. 数学物理学报, 2023, 43A(4): 1284-1296 |
Jian J b, Lin H, Ma G D. A Splitting sequence quadratic programming algorithm for the Large-Scale nonconvex nonseparable optimization problems. Acta Math sci, 2023, 43A(4): 1284-1296 | |
[2] | 刘富勤, 彭建文, 罗洪林. 具有线性化技术的三块非凸不可分优化问题 Bregman ADMM 收敛性分析. 数学物理学报, 2023, 43A(1): 291-304 |
Liu F Q, Peng J W, Luo H L. Convergence analysis of Bregman ADMM for three-block nonconvex indivisible optimization problems with linearization technique. Acta Math Sci, 2023, 43A(1): 291-304 | |
[3] | 陈建华, 彭建文. 非凸多块优化的 Bregman ADMM 的收敛率研究. 数学物理学报, 2024, 44A(1): 195-208 |
Chen J H, Peng J W. Research on the convergence rate of Bregman ADMM for nonconvex multiblock optimization. Acta Math Sci, 2024, 44A(1): 195-208 | |
[4] | Nikolova M, Ng M K, Zhang S Q, Ching W K. Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization. SIAM J Imaging Sci, 2008, 1(1): 2-25 |
[5] | Gu S H, Zhang L, Zuo W M, Feng X C. Weighted nuclear norm minimization with application to image denoising. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014: 2862-2869 |
[6] | Bian W, Chen X J. Linearly constrained non-Lipschitz optimization for image restoration. SIAM J Imaging Sci, 2015, 8(4): 2294-2322 |
[7] | Bolte J, Sabach S, Teboulle M. Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math Program, 2014, 146(1): 459-494 |
[8] | Bot R I, Csetnek E R, Vuong P T. The forward-backward-forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces. Eur J Oper Res, 2020, 287(1): 49-60 |
[9] | Attouch H, Bolte J, Svaiter B F. Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Guass-Seidel methods. Math Program, 2013, 137(1): 91-129 |
[10] | Donoho D L. Compressed sensing. IEEE Trans Inform Theory, 2006, 52(4): 1289-1306 |
[11] | Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 2011, 3(1): 1-122 |
[12] | Bertsekas D P, Tsitsiklis J N. Parallel and Distributed Computation: Numerical Methods. Englewood Cliffs, NJ: Prentice Hall, 1989 |
[13] | Bertsekas D P. Nonlinear programming. J Oper Res Soc, 1977, 48(3): 334-334 |
[14] | Beck A, Tetruashvili L. On the convergence of block coordinate descent type methods. SIAM J Optim, 2013, 23(4): 2037-2060 |
[15] | Auslender A. Asymptotic properties of the Fenchel dual functional and applications to decomposition problems. J Optim Theory Appl, 1992, 73(3): 427-449 |
[16] | Attouch H, Bolte J, Redont P, Soubeyran A. Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality. Math Oper Res, 2010, 35(2): 438-457 |
[17] | Nikolova M, Tan P. Alternating structure-adapted proximal gradient descent for nonconvex block-regularised problems. SIAM J Optim, 2019, 29(3): 2053-2078 |
[18] | Ochs P, Chen Y, Brox T, Pock T. iPiano: Inertial proximal algorithm for nonconvex optimization. SIAM J Imaging Sci, 2014, 7(2): 1388-1419 |
[19] | Bot R I, Csetnek E R. An inertial Tseng's type proximal algorithm for nonsmooth and nonconvex optimization problems. J Optim Theory Appl, 2016, 171(2): 600-616 |
[20] | Polyak B T. Some methods of speeding up the convergence of iteration methods. USSR Comput Math Math Phys, 1964, 4(5): 1-17 |
[21] | Le T K H, Nicolas G, Panagiotis P. Inertial block proximal methods for non-convex non-smooth optimization. Proceedings of the 37th International Conference on Machine Learning, PMLR, 2020, 119: 5671-5681 |
[22] | Feng J K, Zhang H B, Zhang K L, Zhao P F. An inertial Douglas-Rachford splitting algorithm for nonconvex and nonsmooth problems. Concurrency and Computation Practice and Experience, 2023, 35(17): e6343 |
[23] | Zhang Y X, He S N. Inertial proximal alternating minimization for nonconvex and nonsmooth problems. J Inequal Appl, 2017, 2017: 1-13 |
[24] | Pock T, Sabach S. Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems. SIAM J Imaging Sci, 2017, 9(4): 1756-1787 |
[25] | Gao X, Cai X J, Han D R. A Gauss-Seidel type inertial proximal alternating linearized minimization for a class of nonconvex optimization problems. J Glob Optim, 2020, 76: 863-887 |
[26] | Wang Q X, Han D R. A generalized inertial proximal alternating linearized minimization method for nonconvex nonsmooth problems. Appl Numer Math, 2023, 189: 66-87 |
[27] | Yang X, Xu L L. Some accelerated alternating proximal gradient algorithms for a class of nonconvex nonsmooth problems. J Glob Optim, 2023, 87(2): 939-964 |
[28] | Zhao J, Dong Q L, Michael Th R, Wang F H. Two-step inertial Bregman alternating minimization algorithm for nonconvex and nonsmooth problems. J Glob Optim, 2022, 84(4): 941-966 |
[29] | Chao M T, Nong F F, Zhao M Y. An inertial alternating minimization with Bregman distance for a class of nonconvex and nonsmooth problems. J Appl Math Comput, 2023, 69(2): 1559-1581 |
[30] | Mordukhovich B. Variational Analysis and Generalized Differentiation. I: Basic Theory. Berlin: Springer-Verlag, 2006 |
[31] | Bolte J, Daniilidis A, Lewis A. The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J Optim, 2006, 17(4): 1205-1223 |
[32] | Rockafellar R T, Wets R. Variational Analysis. Berlin: Springer, 1998 |
[33] | Wang F H, Cao W F, Xu Z B. Convergence of multi-block Bregman ADMM for nonconvex composite problems. Sci China Inf Sci, 2018, 61: 122101 |
[34] | Xu Y, Yin W. A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM J Imaging Sci, 2013, 6(3): 1758-1789 |
[35] | Hsieh Y P, Kao Y C, Mahabadi R K, et al. A non-Euclidean gradient descent framework for nonconvex matrix factorization. IEEE Trans Signal Process, 2018, 66(22): 5917-5926 |
[36] | Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization. Nature, 1999, 401(6755): 788-791 |
[37] | Pan J, Gillis N. Generalized separable nonnegative matrix factorization. IEEE Trans Pattern Anal Mach Intell, 2021, 43(5): 1546-1561 |
[38] | Rousset F, Peyrin F, Ducros N. A semi nonnegative matrix factorization technique for pattern generalization in single-pixel imaging. IEEE Trans Comput Imaging, 2018, 4(2): 284-294 |
[39] |
Peharz R, Pernkopf F. Sparse nonnegative matrix factorization with $l_0$-constraints. Neurocomputing, 2012, 80: 38-46
pmid: 22505792 |
[40] | Xu Z B, Chang X Y, Xu F M, Zhang H. $L_{1/2}$ regularization: a thresholding representation theory and a fast solver. IEEE Trans Neural Netw Learning Syst, 2012, 23(7): 1013-1027 |
[1] | 陈建华, 彭建文. 非凸多分块优化的 Bregman ADMM 的收敛率研究[J]. 数学物理学报, 2024, 44(1): 195-208. |
|