数学物理学报 ›› 2024, Vol. 44 ›› Issue (6): 1630-1651.

• • 上一篇    下一篇

非凸非光滑优化问题的两步惯性 Bregman 邻近交替线性极小化算法

赵静*(),郭晨正()   

  1. 中国民航大学理学院 天津 300300
  • 收稿日期:2023-06-15 修回日期:2024-04-16 出版日期:2024-12-26 发布日期:2024-11-22
  • 通讯作者: 赵静 E-mail:zhaojing200103@163.com;g13526199036@163.com
  • 作者简介:郭晨正, Email: g13526199036@163.com
  • 基金资助:
    天津市教委科研计划项目自然科学重点项目(2022ZD007)

Two-Step Inertial Bregman Proximal Alternating Linearized Minimization Algorithm for Nonconvex and Nonsmooth Problems

Jing Zhao*(),Chenzheng Guo()   

  1. College of Science, Civil Aviation University of China, Tianjin 300300
  • Received:2023-06-15 Revised:2024-04-16 Online:2024-12-26 Published:2024-11-22
  • Contact: Jing Zhao E-mail:zhaojing200103@163.com;g13526199036@163.com
  • Supported by:
    Scientific Research Project of Tianjin Municipal Education Commission(2022ZD007)

摘要:

针对一类非凸非光滑不可分优化问题, 该文基于邻近交替线性极小化算法, 结合两步惯性外推和 Bregman 距离提出了一种新的迭代算法. 通过构造适当的效益函数, 利用 Kurdyka-Łojasiewicz 性质, 证明了所提出算法生成的迭代序列具有收敛性. 最后, 将该算法应用于稀疏非负矩阵分解、信号恢复、二次分式规划问题, 通过数值算例表明了提出算法的有效性.

关键词: 非凸非光滑优化, 邻近交替线性极小化, 惯性外推, Bregman 距离, Kurdyka-Łojasiewicz 性质

Abstract:

In this paper, for solving a class of nonconvex and nonsmooth nonseparable optimization problems, based on proximal alternating linearized minimization method we propose a new iterative algorithm which combines two-step inertial extrapolation and Bregman distance. By constructing appropriate benefit function, with the help of Kurdyka-Łojasiewicz property we establish the convergence of the whole sequence generated by proposed algorithm. We apply the proposed algorithm to solve sparse nonnegative matrix factorization, signal recovery and quadratic fractional programming problems, and show the effectiveness of proposed algorithm.

Key words: Nonconvex and nonsmooth optimization, Proximal alternating linearized minimization, Inertial extrapolation, Bregman distance, Kurdyka-Łojasiewicz property

中图分类号: 

  • O224