数学物理学报

• •    

Banach空间上一类非稠定时滞微分方程的概自守性

郑兰玲,丁惠生   

  1. 江西师范大学数学与统计学院
  • 收稿日期:2023-07-24 修回日期:2023-11-06 发布日期:2024-01-26
  • 通讯作者: 丁惠生

Almost automorphy for a class of delay differential equations with non-densely defined operators on Banach spaces

,   

  • Received:2023-07-24 Revised:2023-11-06 Published:2024-01-26

摘要: 本文主要研究Banach空间X上一类有限时滞微分方程 u(t)=Au(t)+Lut+f(t,ut), tR

的概自守性, 其中A为非稠定的Hille-Yosida算子, L为有界线性算子, f为二元Sp概自守函数. 相比已有相关研究结果, 本文不要求Hille-Yosida算子生成的半群具有紧性, 且仅在f具有更弱的Lipschitz假设和比概自守性更弱的Sp概自守性假设下, 得到了上述时滞微分方程的解具有紧概自守性(比概自守性更强). 此外, 本文还把抽象结果应用到一类来源于年龄结构模型的偏微分方程.

关键词: Hille-Yosida算子, 概自守性, 概周期性, 抽象时滞微分方程

Abstract: This paper is mainly concerned with almost automorphy for a class of finite delay differential equations u(t)=Au(t)+Lut+f(t,ut), tR on a Banach space X, where A is a Hille-Yosida operator with the domain being not dense, L is a bounded linear operator, and f is a binary Spalmost automorphic function. Compared with the previous research results, we do not require the semigroup generated by the Hille-Yosida operator to be compact, and only under weaker Lipschitz hypothesis of f and Spalmost automorphy hypothesis, which is weaker than almost automorphy, of f, the solution of the above delay differential equation is showed to be compact almost automorphic (stronger than almost automorphic). Moreover, the abstract results are applied to a class of partial differential equations arising in age-structured models.

Key words: Hille-Yosida operator, Almost automorphy, Almost periodicity, Abstract delay differential equation

中图分类号: 

  • O177.92