数学物理学报 ›› 2023, Vol. 43 ›› Issue (5): 1559-1574.
收稿日期:
2022-10-26
修回日期:
2023-04-10
出版日期:
2023-10-26
发布日期:
2023-08-09
通讯作者:
赵才地
E-mail:zhaocaidi2013@163.com
基金资助:
Received:
2022-10-26
Revised:
2023-04-10
Online:
2023-10-26
Published:
2023-08-09
Contact:
Caidi Zhao
E-mail:zhaocaidi2013@163.com
Supported by:
摘要:
该文研究加权空间中一阶格点系统的统计解及其 Kolmogorov 熵. 文章首先证明一阶格点系统的初值问题在加权空间中具有整体适定性, 且解映射生成一个连续过程并存在一族不变 Borel 概率测度, 接着证明该族不变测度满足 Liouville 定理, 且是该格点系统的统计解, 最后给出了统计解的 Kolmogorov 熵的估计.
中图分类号:
邹天芳,赵才地. 加权空间中一阶格点系统的统计解及其 Kolmogorov 熵[J]. 数学物理学报, 2023, 43(5): 1559-1574.
Zou Tianfang,Zhao Caidi. Statistical Solutions and Kolmogorov Entropy for First-Order Lattice Systems in Weighted Spaces[J]. Acta mathematica scientia,Series A, 2023, 43(5): 1559-1574.
[1] |
Foias C, Prodi G. Sur les solutions statistiques des équations de Naiver-Stokes. Ann Mat Pur Appl, 1976, 111: 307-330
doi: 10.1007/BF02411822 |
[2] | Foias C, Manley O, Rosa R, Temam R. Navier-Stokes Equations and Turbulence. Cambridge: Cambridge University Press, 2001 |
[3] |
Vishik M, Fursikov A. Translationally homogeneous statistical solutions and individual solutions with infinite energy of a system of Navier-Stokes equations. Siberian Math J, 1978, 19: 710-729
doi: 10.1007/BF00973601 |
[4] |
Chekroun M, Glatt-Holtz N. Invariant measures for dissipative dynamical systems: Abstract results and applications. Commun Math Phys, 2012, 316(3): 723-761
doi: 10.1007/s00220-012-1515-y |
[5] | Łukaszewicz G, Robinson J C. Invariant measures for non-autonomous dissipative dynamical systems. Discrete Cont Dyn Syst, 2014, 34: 4211-4222 |
[6] | Wang X. Upper-semicontinuity of stationary statistical properties of dissipative systems. Discrete Cont Dyn Syst, 2009, 23: 521-540 |
[7] |
Bronzi A, Mondaini C, Rosa R. Trajectory statistical solutions for three-dimensional Navier-Stokes-like systems. SIAM J Math Anal, 2014, 46: 1893-1921
doi: 10.1137/130931631 |
[8] |
Bronzi A, Mondaini C, Rosa R. Abstract framework for the theory of statistical solutions. J Differ Equations, 2016, 260: 8428-8484
doi: 10.1016/j.jde.2016.02.027 |
[9] |
Zhao C, Li Y, Caraballo T. Trajectory statistical solutions and Liouville type equations for evolution equations: Abstract results and applications. J Differ Equations, 2020, 269: 467-494
doi: 10.1016/j.jde.2019.12.011 |
[10] | Jiang H, Zhao C. Trajectory statistical solutions and Liouville type theorem for nonlinear wave equations with polynomial growth. Adv Differential Equ, 2021, 26(3/4): 107-132 |
[11] |
Zhao C, Caraballo T. Asymptotic regularity of trajectory attractor and trajectory statistical solution for the 3D globally modified Navier-Stokes equations. J Differ Equations, 2019, 266: 7205-7229
doi: 10.1016/j.jde.2018.11.032 |
[12] | Zhao C, Li Y, Łukaszewicz G. Statistical solution and partial degenerate regularity for the 2D non-autonomous magneto-micropolar fluids. Z Angew Math Phys, 2020, 71: Article number 141 |
[13] | Zhao C, Li Y, Sang Y. Using trajectory attractor to construct trajectory statistical solution for the 3D incompressible micropolar flows. Z Angew Math Mech, 2020, 100: e201800197 |
[14] |
Zhao C, Song Z, Caraballo T. Strong trajectory statistical solutions and Liouville type equation for dissipative Euler equations. Appl Math Lett, 2020, 99: 105981
doi: 10.1016/j.aml.2019.07.012 |
[15] |
Zhao C, Li Y, Song Z. Trajectory statistical solutions for the 3D Navier-Stokes equations: The trajectory attractor approach. Nonlinear Anal: RWA, 2020, 53: 103077
doi: 10.1016/j.nonrwa.2019.103077 |
[16] |
Zhao C, Wang J, Caraballo T. Invariant sample measures and random Liouville type theorem for the two-dimensional stochastic Navier-Stokes equations. J Differ Equations, 2022, 317: 474-494
doi: 10.1016/j.jde.2022.02.007 |
[17] |
Carrol T, Pecora L. Synchronization in chaotic systems. Phys Rev Lett, 1990, 64: 821-824
pmid: 10042089 |
[18] | Chow S N, Mallet-Paret J, Van Vleck E S. Pattern formation and spatial chaos in spatially discrete evolution equations. Rand Comp Dyn, 1996, 4: 109-178 |
[19] |
Chua L O, Yang L. Cellular neural networks: Theory. IEEE Trans Circ Syst, 1988, 35: 1257-1272
doi: 10.1109/31.7600 |
[20] |
Chua L O, Yang L. Cellular neural networks: Applications. IEEE Trans Circ Syst, 1988, 35: 1273-1290
doi: 10.1109/31.7601 |
[21] |
Erneux T, Nicolis G. Propagating waves in discrete bistable reaction diffusion systems. Physica D, 1993, 67: 237-244
doi: 10.1016/0167-2789(93)90208-I |
[22] |
Wang B. Dynamics of systems on infinite lattices. J Differ Equations, 2006, 221: 224-245
doi: 10.1016/j.jde.2005.01.003 |
[23] |
Zhou S, Shi W. Attractors and dimension of dissipative lattice systems. J Differ Equations, 2006, 224: 172-204
doi: 10.1016/j.jde.2005.06.024 |
[24] |
Wang B. Asymptotic behavior of non-autonomous lattice systems. J Math Anal Appl, 2007, 331: 121-136
doi: 10.1016/j.jmaa.2006.08.070 |
[25] | Zhao X, Zhou S. Kernel sections for processes and nonautonomous lattice systems. Discrete Cont Dyn Syst-B, 2008, 9(3/4): 763-785 |
[26] | Zhou S, Zhao C. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Commun Pure Appl Anal, 2007, 21: 1087-1111 |
[27] |
Zhao C, Zhou S. Attractors of retarded first order lattice systems. Nonlinearity, 2007, 20: 1987-2006
doi: 10.1088/0951-7715/20/8/010 |
[28] |
Han X, Shen W, Zhou S. Random attractors for stochastic lattice dynamical systems in weighted spaces. J Differ Equations, 2011, 250: 1235-1266
doi: 10.1016/j.jde.2010.10.018 |
[29] |
Zhao C, Zhou S. Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems and applications. J Math Anal Appl, 2009, 354: 78-95
doi: 10.1016/j.jmaa.2008.12.036 |
[30] |
Zhou S. Random exponential attractor for cocycle and application to non-autonomous stochastic lattice systems with multiplicative white noise. J Differ Equations, 2017, 263: 2247-2279
doi: 10.1016/j.jde.2017.03.044 |
[31] |
Abdallah A Y. Uniform exponential attractors for first order non-autonomous lattice dynamical systems. J Differ Equations, 2011, 251: 1489-1504
doi: 10.1016/j.jde.2011.05.030 |
[32] | 赵才地, 周盛凡. 格点系统存在指数吸引子的充分条件及应用. 数学学报, 2010, 53: 233-242 |
Zhao C, Zhou S. Sufficient conditions for the existence of exponential attractor for lattice system. Acta Math Sin, 2010, 53: 233-242 | |
[33] |
Zhou S, Han X. Pullback exponential attractors for non-autonomous lattice systems. J Dyn Differ Equ, 2012, 24(3): 601-631
doi: 10.1007/s10884-012-9260-7 |
[34] | Wang Z, Zhou S. Existence and upper semicontinuity of attractors for non-autonomous stochastic lattice FitzHugh-Nagumo systems in weighted spaces. Adv Differ Equ, 2016, Article number 310 |
[35] | Han X, Kloeden P E. Pullback and forward dynamics of nonautonomous Laplacian lattice systems on weighted spaces. Discrete Cont Dyn Syst-S, 2022, 15(10): 2909-2927 |
[36] |
Abdallah A Y, Abu-Shaab H N, Ai-Khoder T M, et al. Dynamics of non-autonomous first order lattice systems in weighted spaces. J Math Phys, 2022, 63(10): 102703
doi: 10.1063/5.0090227 |
[37] | 李永军, 桑燕苗, 赵才地. 一阶格点系统的不变测度与Liouville型方程. 数学物理学报, 2020, 40A(2): 328-339 |
Li Y, Sang Y, Zhao C. Invariant measures and Liouville type theorem for fisrt-order lattice system. Acta Math Sci, 2020, 40A(2): 328-339 | |
[38] | Zhao C, Xue G, Łukaszewicz G. Pullabck attractors and invariant measures for the discrete Klein-Gordon-Schrödinger equatios. Discrete Cont Dyn Syst-B, 2018, 23: 4021-4044 |
[39] | Carvalho A, Langa J A, Robinson J C. Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems. New York: Springer, 2013 |
[40] | Lorentz G G, Golitschek M, Makovoz Y. Constructive Approximation:Advanced Problems. Berlin: Springer, 1996 |
[1] | 曹洁,黄兰,苏克勤. 带弱阻尼Navier-Stokes方程拉回吸引子的收敛性[J]. 数学物理学报, 2022, 42(4): 1173-1185. |
[2] | 赵才地,姜慧特,李春秋,TomásCaraballo. 脉冲离散Ginzburg-Landau方程组的统计解及其极限行为[J]. 数学物理学报, 2022, 42(3): 784-806. |
[3] | 徐明月,赵才地,TomásCaraballo. 三维不可压Navier-Stokes方程组轨道统计解的退化正则性[J]. 数学物理学报, 2021, 41(2): 336-344. |
[4] | 彭小明,郑筱筱,尚亚东. 具有非线性阻尼的Navier-Stokes-Voigt方程的拉回吸引子[J]. 数学物理学报, 2021, 41(2): 357-369. |
[5] | 肖巧懿,李春秋. 离散的三分量可逆Gray-Scott模型的不变Borel概率测度[J]. 数学物理学报, 2021, 41(2): 523-537. |
[6] | 朱凯旋,谢永钦,周峰,邓习军. 带有时滞项的复Ginzburg-Landau方程的拉回吸引子[J]. 数学物理学报, 2020, 40(5): 1341-1353. |
[7] | 李永军,桑燕苗,赵才地. 一阶格点系统的不变测度与Liouville型方程[J]. 数学物理学报, 2020, 40(2): 328-339. |
[8] | 冯保伟, 苏克勤. Rn空间中带有密度函数的四阶粘弹方程的一致衰减性[J]. 数学物理学报, 2018, 38(1): 122-133. |
[9] | 汪永海, 秦玉明. 非经典扩散方程的拉回吸引子在H01(Ω)中的上半连续性[J]. 数学物理学报, 2016, 36(5): 946-957. |
[10] | 杨新光, 赵明霞, 侯伟. 带弱耗散的两维非自治不可压Navier-Stokes方程拉回吸引子的上半连续性[J]. 数学物理学报, 2016, 36(4): 722-739. |
[11] | 梁芸芸, 李楚进, 赵才地. 格点量子Zakharov 方程组紧致核截面的存在性与熵的估计[J]. 数学物理学报, 2014, 34(5): 1203-1218. |
[12] | 杨新波, 赵才地, 贾晓琳. 自治耦合格点非线性 SchrÖdinger 方程组的一致吸引子及熵的估计[J]. 数学物理学报, 2013, 33(4): 636-645. |
[13] | 王小虎, 李树勇. 无界区域上具线性阻尼的二维 Navier-Stokes 方程的拉回吸引子[J]. 数学物理学报, 2009, 29(4): 873-881. |
|