1 |
Chen M F . From Markov Chains to Non-Equilibrium Particle Systems. Singapore: World Scientific, 2004
|
2 |
Meyn S P , Tweedie R L . Markov Chains and Stochastic Stability. London: Springer, 1992
|
3 |
Lindvall T . Lectures on the Coupling Method. New York: Wiley, 1992
|
4 |
张水利. 一般状态空间跳过程的随机稳定性[D]. 武汉: 湖北大学, 2014
|
|
Zhang Shuili. Stochastic Stability of Jump Processes in General State Space[D]. Wuhan: Hubei University, 2014
|
5 |
王健. Levy型算子所生成马氏过程的稳定性. 数学年刊, 2011, 32A (1): 33- 50
|
|
Wang Jian . Stability of Markov processes generated by levy type operators. Annals of Mathematics, 2011, 32A (1): 33- 50
|
6 |
朱志锋, 张绍义. 用概率距离研究非时齐马氏链的收敛性. 数学物理学报, 2018, 38A (5): 963- 969
doi: 10.3969/j.issn.1003-3998.2018.05.013
|
|
Zhu Zhifeng , Zhang Shaoyi . Study on the convergence of non-homogeneous Markov chains by probability distance. Acta Mathematica Scientia, 2018, 38A (5): 963- 969
doi: 10.3969/j.issn.1003-3998.2018.05.013
|
7 |
朱志锋, 张绍义. 用耦合方法研究马氏链f-指数遍历. 数学学报, 2019, 62 (3): 287- 292
|
|
Zhu Zhifeng , Zhang Shaoyi . Study on f-exponential ergodicity of Markov chain by coupling method. Acta Mathematica Sinica, 2019, 62 (3): 287- 292
|
8 |
Zhang S Y . Existence of the optimal measurable coupling and ergodicity for markov processes. Science in China, 1999, 42A, 58- 67
doi: 10.1007/BF02872050
|
9 |
Zhang S Y . Regularity and existence of invariant measures for jump processes. Acta Mathematica Sinica, 2005, 48, 785- 788
|
10 |
Gutjahr W J , Pflug G C . Simulated annealing for noisy cost functions. Journal of Global Optimization, 1996, 8, 1- 13
doi: 10.1007/BF00229298
|
11 |
Ahmed M A , Alkhamis T M . Simulation-based optimization using simulated an nealing with ranking and selection. Computers Operations Research, 2002, 29 (4): 387- 402
doi: 10.1016/S0305-0548(00)00073-3
|