1 |
Bejenaru I , Ionescu A D , Kenig C E , et al. Global Schrödinger maps in dimensions d ≥ 2:small data in the critical Sobolev spaces. Ann Math, 2011, 173 (2/3): 1443- 1506
|
2 |
Cazenave T . An Introduction to Nonlinear Schrödinger Equations. Rio de Janeiro: Instituto de Matemática Universidade Federal do Rio de Janeiro, 1996,
|
3 |
Chang N H , Shatah J , Uhlenbeck K . Schrödinger maps. Comm Pure Appl Math, 2000, 53 (5): 590- 602
doi: 10.1002/(SICI)1097-0312(200005)53:5<590::AID-CPA2>3.0.CO;2-R
|
4 |
Ding Q . Explicit blow-up solutions to the Schrödinger maps from R2 to the hyperbolic 2-space ${\cal H}.2$. J Math Phys, 2009, 50 (10): 103507
doi: 10.1063/1.3218848
|
5 |
Ding W Y , Wang Y D . Local Schrödinger flow into Kähler manifolds. Sci China, 2001, 44, 1446- 1464
doi: 10.1007/BF02877074
|
6 |
Ding S J , Wang C Y . Finite time singularity of the Landau-Lifshitz-Gilbert equation. Int Math Res Not, 2007,
doi: 10.1093/imrn/rnm012
|
7 |
Guo B L , Huang H Y . Smooth solution of the generalized system of ferro-magnetic chain. Discrete Contin Dyn Syst, 1999, 5, 729- 740
doi: 10.3934/dcds.1999.5.729
|
8 |
Ionescu A D , Kenig C E . Low-regularity Schrödinger maps, Ⅱ: global well-posedness in dimensions d ≥ 3. Commun Math Phys, 2007, 271, 523- 559
doi: 10.1007/s00220-006-0180-4
|
9 |
Liu X G . Concentration sets of the Landau-Lifshitz system and quasi-mean curvature flows. Calc Var Partial Differential Equations, 2006, 27 (4): 493- 525
doi: 10.1007/s00526-006-0038-9
|
10 |
Landau L D , Lifshitz E M . On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys Z Sowjetunion, 1935, 8
doi: 10.1016/B978-0-08-036364-6.50008-9
|
11 |
Lin J Y , Lai B S , Wang C Y . Global well-posedness of the Landau-Lifshitz-Gilbert equation for initial data in Morrey spaces. Calc Var Partial Differential Equations, 2015, 54 (1): 665- 692
doi: 10.1007/s00526-014-0801-2
|
12 |
Li Z X , Shen Y T . Nonsmooth critical point theorems and its applications to quasilinear Schrödinger equations. Acta Math Sci, 2016, 36B (1): 73- 86
|
13 |
Li Q Q , Wu X . Existence of nontrivial solutions for generalized quasilinear Schrödinger equations with critical or supercritical growths. Acta Math Sci, 2017, 37B (6): 1870- 1880
|
14 |
Merle F , Raphaël P , Radnianski I . Blow up dynamics for smooth data equivariant solutions to the critical Schrödinger map problem. Invent Math, 2013, 193 (2): 249- 365
doi: 10.1007/s00222-012-0427-y
|
15 |
Wang B X . Globally well and ill posedness for non-elliptic derivative Schrödinger equations with small rough data. J Funct Anal, 2013, 265 (12): 3009- 3052
doi: 10.1016/j.jfa.2013.08.009
|
16 |
Yang G S , Guo B L . Some exact solutions to multidimensional Landau-Lifshitz equation with uprush external field and anisotropy field. Nonlinear Anal, 2009, 71 (9): 3999- 4006
doi: 10.1016/j.na.2009.02.070
|
17 |
Zhong P H , Wang S , Zeng M . Some exact blowup solutions to multidimensional Schrödinger map equation on hyperbolic space and cone. Mod Phys Lett A, 2013, 28 (10): 1350043
doi: 10.1142/S0217732313500430
|
18 |
钟澎洪, 杨干山, 马璇. 双曲空间上的Landau-Lifshitz-Gilbert方程解的全局存在性与自相似爆破解. 数学物理学报, 2019, 39A (3): 461- 474
doi: 10.3969/j.issn.1003-3998.2019.03.006
|
|
Zhong P H , Yang G S , Ma X . Global existence and self-similar blowup of Landau-Lifshitz-Gilbert equation on hyperbolic space. Acta Math Sci, 2019, 39A (3): 461- 474
doi: 10.3969/j.issn.1003-3998.2019.03.006
|