1 |
Besse A. Einstein Manifolds. Berlin: Springer-Verlag, 1987
|
2 |
Cao H D . Recent progress on Ricci solitons. Adv Lect Math, 2010, 11: 1- 38
|
3 |
Cao H D , Chen B L , Zhu X P . Recent Developments on the Hamilton's Ricci flow. Surv Diff Geom, 2007, 12 (1): 47- 112
doi: 10.4310/SDG.2007.v12.n1.a3
|
4 |
Cao H D , Zhou D T . On complete gradient shrinking solitons. J Diff Geom, 2009, 85 (2): 175- 185
|
5 |
Chen B L . Strong uniqueness of the Ricci flow. J Diff Geom, 2009, 82: 363- 382
doi: 10.4310/jdg/1246888488
|
6 |
Chen B L , Tang S H , Zhu X P . Complete classification of compact four manifolds with positive isotropy curvature. J Diff Geom, 2012, 91: 41- 80
doi: 10.4310/jdg/1343133700
|
7 |
Chen B L , Zhu X P . Ricci flow with surgery on four-manifolds with positive isotropy curvature. J Diff Geom, 2006, 74: 177- 264
doi: 10.4310/jdg/1175266204
|
8 |
Chen X X , Wang Y Q . On four-dimensional anti-self-dual gradient Ricci solitons. J Geom Anal, 2015, 25 (2): 1335- 1343
doi: 10.1007/s12220-014-9471-8
|
9 |
Fernandez-Lopez M , Garcia-Rio E . Rigidity of shrinking Ricci solitons. Math Z, 2011, 269: 461- 466
doi: 10.1007/s00209-010-0745-y
|
10 |
Hamilton R S . Four manifolds with positive isotropic curvature. Comp Ana Geom, 1997, 5: 1- 92
doi: 10.4310/CAG.1997.v5.n1.a1
|
11 |
Li X L, Ni L, Wang K. Four-dimensional gradient shrinking solitons with positive isotropy curvature. 2016, arXiv: 1603.05264
|
12 |
Micallef M , Moore J D . Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropy two-planes. Ann of Math, 1988, 127 (2): 199- 227
|
13 |
Micallef M , Wang M . Metrics with nonnegative isotropic curvature. Duke Math J, 1993, 72 (3): 649- 672
doi: 10.1215/S0012-7094-93-07224-9
|
14 |
Munteanu O , Sesum N . On gradient Ricci solitons. J Geom Anal, 2013, 23 (2): 539- 561
doi: 10.1007/s12220-011-9252-6
|
15 |
Munteanu O , Wang J P . Geometry of shrinking Ricci solitons. Comp Math, 2015, 151 (12): 2273- 2300
doi: 10.1112/S0010437X15007496
|
16 |
Munteanu O, Wang J P. Positively curved shrinking Ricci solitons are compact. 2015, arXiv: 1504.07898
|
17 |
Ni L , Wallach N . On a classification of the gradient shrinking solitons. Math Res Lett, 2008, 15 (5): 941- 955
doi: 10.4310/MRL.2008.v15.n5.a9
|
18 |
Petersen P , Wylie W . On the classification of gradient Ricci solitons. Geom Topol, 2010, 14 (4): 2277- 2300
doi: 10.2140/gt.2010.14.2277
|
19 |
Richard T , Seshadri H . Positive isotropic curvature and self-duality in dimension 4. Manu Math, 2016, 149 (3): 443- 457
|
20 |
Wu J Y, Wu P, Wylie W. Gradient shrinking Ricci solitons of half harmonic Weyl curvature. 2014, arXiv: 1410.7303
|
21 |
Wu P. Berger curvature decomposition, Weitzenböck formula, and canonical metrics on four-manifolds. 2014, arXiv: 1410.7260
|
22 |
Zhang Z H . Gradient shrinking solitons with vanishing Weyl tensor. Pacific J Math, 2009, 242 (1): 189- 200
doi: 10.2140/pjm.2009.242.189
|